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ABSTRACT

The objective of this research is to develop control methods to attenuate laser beam jitter using a fast-steering mirror.
Adaptive filter controllers using Filtered-X least mean square and Filtered-X recursive least square algorithms are
explored. The disturbances that cause beam jitter include mechanical vibrations on the optical platform (narrowband)
and atmospheric turbulence (broadband). Both feedforward filters (with the use of auxiliary reference sensor(s)) and
feedback filters (with only output feedback) are investigated. Hybrid adaptive filters, which are a combination of
feedback and feedforward, are also examined. For situations when obtaining a coherent feedforward reference signal is
not possible, methods for incorporating multiple semi-coherent reference signals into the control law are developed. The
controllers are tested on a jitter control testbed to prove their functionality. The testbed is equipped with shakers
mounted to the optical platform and a disturbance fast-steering mirror to simulate the effects of atmospheric propagation.
Experimental results showed that the feedback adaptive filter controller was superior to the feedforward technique, and
the hybrid method achieved the best overall results.
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1. INTRODUCTION

Optical beam jitter control has become a topic of great interest with applications in directed energy weapons, free-space
laser communications and adaptive optics. The objective of this research is to use a fast-steering mirror (FSM) to point a
laser beam accurately at a target in the presence of jitter. The disturbances can be time varying and include mechanical
vibrations on the optical platform and jitter induced by atmospheric turbulence. Mechanical vibrations caused by rotary
or repetitive devices (engines, actuators, electric motors, etc) onboard the platform cause narrowband jitter. Atmospheric
induced jitter is spread over a wide range of frequencies causing broadband jitter. A method for attenuating these
disturbances must be developed in order to allow high precision optical devices to operate.

Recent work at Naval Postgraduate School (NPS) has focused on adaptive feedforward control. A feedforward adaptive
filter may be used only when a reference signal, which is highly correlated with the disturbances, is available. A
reference sensor directly measures the disturbance and produces the reference signal. This signal is fed into a transversal
filter whose filter gains, or weights, are updated using the error signal (the difference between the beam position and its
desired location). In these experiments, the error signal is measured using a beam position sensing detector (PSD). The
error signal is used to adaptively update the weights in the filter and generate the control commands for the FSM.
Watkins and Agrawal [1]-[2] proposed a feedforward adaptive filter with a filtered-X least mean square (FX-LMS)
weight updating algorithm. Yoon et al. [3] proposed a similar feedforward controller using the filtered-X recursive least
square (FX-RLS) algorithm and an integrated bias estimator. While the FX-RLS method is computationally more
expensive than FX-LMS, Yoon et al. showed that it is superior to FX-LMS in terms of convergence time and steady
state performance. Gibson and his research team at UCLA have published several papers, [4]-[8], on beam jitter control
using a feedback multichannel recursive least-squares (RLS) lattice filter algorithm.

A disadvantage of any feedforward algorithm is the required reference signal [9]. For good jitter rejection, the reference
signal must be correlated with the entire frequency content of the disturbance which may be caused by various sources.
Therefore, this “fully coherent” reference signal is often difficult, if not impossible, to obtain. To combat this dilemma,
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we develop methods for using multiple “semi-coherent” reference signals in the feedforward control law. In this more
realistic situation, signals are available that are only correlated with some component of the total disturbance. This
method fuses together information from multiple reference signals to achieve the effect of using a single fully coherent
signal. In these experiments, a PSD (primarily measuring the atmospheric disturbance) and an accelerometer (measuring
the vibrational disturbance) provide the two reference signals.

For situations where it is not practical to use a feedforward technique, we develop a feedback adaptive filter with the
same traversal filter structure as the previously mentioned feedforward filter. In this technique, instead of directly
measuring the upstream disturbance (reference sensor), the noise source is internally estimated using only the error
signal (feedback signal) and then fed as a reference signal into a feedforward adaptive filter. Finally, a hybrid adaptive
filter is introduced that combines both techniques in parallel.

2. EXPERIMENTAL SETUP

The jitter control testbed at the Spacecraft Research and Design Center (SRDC), at Naval Postgraduate School (NPS),
Monterey, CA was used for this experiment. The testbed contains a laser source, 3-axis accelerometer, beam splitter, two
inertial actuators (shakers), two position sensing detectors (PSD, referred to as OT-1 and OT-2) and two fast steering
mirrors: a control fast steering mirror (CFSM) and a disturbance fast steering mirror (DFSM). These components are
mounted on a floating platform used to simulate a spacecraft/aircraft’s vibrational environment. Two shakers are
mounted orthogonally to one another to create narrowband vibrations along different axes of the platform. A 3-axis
accelerometer is mounted near the shakers to provide signals correlated with the shaker disturbances.

The laser propagates from the source to the DFSM where it is given a broadband disturbance to simulate the effects of
atmospheric turbulence. The beam passes onto the vibration platform and to the CFSM where control inputs are applied
to the beam. The beam then propagates to the target PSD (OT-2) which is providing an error signal. In order to simulate
various beam control scenarios, the target sensor (OT-2) was mounted both on-board and off-board the vibration
platform during the experiments. The beam splitter redirects the beam onto the reference signal PSD (OT-1). All of the
optics on-board the vibration platform are subjected to the shaker disturbances.

The OT-1 PSD and accelerometer mounted on-board the vibration platform are the reference sensors that provide the
multiple reference signals to the feedforward control law. Feedforward adaptive filters have been demonstrated in the
past using OT-1 mounted off-board the vibration platform as the sole reference sensor [1]-[3]. In this configuration OT-1
provides a signal reasonably correlated (fully coherent) with both disturbance sources. This scenario, however, may not
reflect real spacecraft/aircraft applications. It is more realistic for OT-1 to be mounted on-board the vibration platform.
In this position, the sensor continues to provide a signal correlated with the DFSM disturbance, but its correlation with
the shaker disturbance is severely degraded. This statement is quantified later in this paper.

The control law is designed in MATLAB Simulink with Real-Time Workshop and xPC Target toolbox. A sample rate of
2 kHz is used throughout the experiment. Cross coupling between the two axes of the CFSM has been shown previously
to be negligible [2]. Therefore, we assume they have zero coupling and the control laws are applied independently
between the two axes of the mirror.

Fig. 1. Experimental setup. OT-1 shown in on-board position, OT-2 shown in off-board position.
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Fig. 2. Experimental setup. OT-1 and OT-2 are shown in both their on-board and off-board positions.

3. FEEDFORWARD ADAPTIVE FILTERS

In an adaptive filter, a reference signal (correlated with the disturbance) is input to a transversal filter, consisting of M
stages or weights. The error between the desired beam location at the target and the actual location, e(n), is fed back to
the filter to adjust these weights. The output of the transversal filter is the control signal to the CFSM, y(n) [9].

The reference signal, r(n), is delayed one time step for each of the M stages, forming a vector of delayed inputs,
r(n) =[r(n),r(n-1),---,r(n—M +1)]" e R . The inner product of the vector of weights w(n) = [w,(n),w,(n)---,w, (n)]" € R and

the reference vector, I'(#) , produces the scalar output y(n):

y(n)=w"(m)r(n) (M
Therefore, the error signal at the position sensor is:
e(n) =d(n)—s(n)* y(n) 2

Where d(n) is the disturbance and s(n) is the secondary plant dynamics between the CFSM and target sensor (OT-2). The
asterisk represents a discrete-time convolution. The goal of the control system is to adaptively update the weighting
vector to minimize the error signal, usually represented as the mean square error, £ = E[e’(n)]. The LMS and RLS

algorithms are methods for updating the weighting vector.
3.1 Wiener Filter

The Wiener filter is the optimum linear discrete time filter for estimating the disturbance and requires that the
disturbance is both stationary and the spectral properties are known. The Wiener filter is not practical for jitter control
because of the unknown and time-varying nature of the disturbance. However, we use the Wiener filter solution as a
reference for the best case jitter rejection by the adaptive filter methods under study. The LMS and RLS weight updating
algorithms in the following sections approach the optimal Wiener filter weightings. In [10], Haykin shows that the
minimum Wiener controlled jitter is:

é:min = O-[iin = E[dz(n)]_pTR_lp (3)
Where R is the expected value of the autocorrelation matrix of the reference vector, R = E[r(n)r'(n)] and p is the

expected value of the cross-correlation vector between the reference vector and the disturbance signal, p = E[r(n)d(n)]-

When the error signal has a zero mean, the mean square error, &, is equivalent to the variance, o As a tool for
comparison later, we define the ratio between the optimal Weiner disturbance rejection and total disturbance:
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Ud - Umin (4)

}/optimal =
F

Where o, is the standard deviation of the beam position at the target with jitter (no control applied). Therefore, Yopsima
varies between 0 and 1, Yopima = 0 for no jitter attenuation and Y,pima = 1 for absolute attenuation. In order to compare
Yoprima tO the experimental results, we equivalently define the ratio between the controlled disturbance rejection and the
total disturbance:

Gz{ - Gcontrolled ( 5)
O

ycnmrolled =

Where 6 on0eq 18 the standard deviation of the beam position at the target with control applied.
3.2 Filtered-X Least Mean Square Algorithm

The least-mean-square algorithm (LMS) is on of the simplest adaptive algorithms and has become a standard for
comparison with more complex algorithms. The algorithm uses the method of steepest decent to take finite steps toward
the optimum weight vector. In [9], Kuo shows that the LMS algorithm to update the weightings is as follows, where p is
the convergence factor or step size.

w(n+1)=w(n)— ur(n)e(n) (6)

The output from the controller, y(n), must pass through the secondary plant between the CFSM and the target sensor
(shown in Figure 3). This causes shifts in gain and phase between the error signal and the reference signal. To account
for this, we place a copy of the secondary plant transfer function, $(#), in the reference signal path to the weight updating
algorithm in Equation 6.

£(n) = §(n)*r(n) (7

This method is referred to as the Filtered-X method in the literature [9]. A system identification was conducted to obtain
the secondary plant transfer function using MATLAB’s System Identification toolbox and input and output data from the
CFSM. Ref. [10] contains a detailed explanation of the system identification methods used.

Finally, we must slightly modify our definition of the reference signal and weighting vector to take into account the
presence of a DC component in the error signal. This is referred to as bias estimation [10] and requires the addition of a
constant element to the reference signal vector and a corresponding weight to track the bias.

rbT () =[Lr" ()] =[1, r(n), r(n=1),---, r(n—M +1)] 8)
W, (n) =[w, (n), W' ()] = [w, (1), w,(n), wy (n),-+, Wy, ()] )
primary plant
distrubance source un) an) + &(n)
> Az > —>

| |
| |
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T W) t > 2
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| 2 LI : i
|
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FX-LMS / FX-RLS feedforward controller

Fig. 3. FX-LMS/FX-RLS implementation. Dark shaded blocks represent actual system dynamics. Control algorithm is
shown inside the dashed box. The secondary plant dynamics S(z) and s(n) (from Equation 7) are Z-transform pairs.
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3.3 Filtered-X Recursive Least Square Algorithm

The recursive-least-square (RLS) algorithm generally provides faster convergence and smaller steady state error than the
LMS algorithm [9]. The main difference is the RLS algorithm’s cost function has a memory of errors with a forgetting
factor of 0 <A < 1, while the LMS cost function does not have memory [9]. The transversal filter structure of the FX-
RLS algorithm is identical to that of FX-LMS, the difference is the weight updating algorithm. The RLS algorithm to
update the weighting vector w(n) at each instance is the following [9].

k(n) = —2 Qi) (10)

1+ A7 (n)Q(n—1)r(n)
w(n)=w(n-1)+k" (n)e(n) (11)
Q(n) =A"'Q(n-1)~A2"k(n)E" (m)Q(n-1) (12)

Where k(n) e R is the time-varying gain vector, andQ(n) € R**" is the inverse correlation matrix. See [10] for a more

rigorous explanation of the RLS algorithm. Note that the use of  indicates that the reference signal is filtered through
the secondary plant dynamics just as in the FX-LMS algorithm.

Also, as in the FX-LMS algorithm, the reference signal and weight vectors are augmented with a constant element to
track the DC component of the error signal (Equations 8 and 9). Therefore, the time-varying gain vector and inverse
correlation matrix are:k(n) e RY*', andQ(n) € RV

3.4 Feedforward Adaptive Filters with Multiple Reference Signals

In [1]-[3], the FX-LMS and FX-RLS algorithms described above have a standard transversal filter structure and use a
single-channel reference signal. In this paper, we are provided two semi-coherent reference signals that are each
correlated with only a component of the total beam jitter. When using two reference signals, we give distinction between
the numbers of accelerometer stages (M) and PSD stages (now denoted as S).

3.4.1 Method 1: Summation of filter outputs

Method 1 uses two separate control blocks (an accelerometer block and a PSD block). The individual outputs are
summed and sent to the CFSM. Therefore, the RLS algorithm will manipulate two inverse correlation matrices per
axis:Q, ., (n)e RV MY qQ,  (n) e RS, The RLS algorithm requires on the order of L? operations per time step,

where L is the filter order [9]. As a result, method 1 requires O{(M+1)* + (S+1)*}operations. A difficulty with parallel

adaptive filters is that their performance and characteristics have not been proved mathematically, as opposed to an
individual adaptive filter. Placing the adaptive filters in parallel may cause unexpected interactions.
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Fig.4. Multiple reference signals using method 1 (left) and method 2 (right).
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3.4.2 Method 2: Augmentation of reference signals

For method 2, the reference signals are combined inside a single control block. The reference signal and weight vectors
are modified to contain both accelerometer and PSD stages.

Y1) =[L, 74y (1 g (=1, Py (R= M+ 1), 1y (), Ty (R 1)+, 1 (n— S+ 1)]T 13)
w(n) =[w, (1), w,(n), wy(n),--, wy, s (W] (14)

The rest of the algorithm is implemented as described is section 3.2 and 3.3. Method 2 has a simpler structure compared
to method 1 because it only requires one filter. The RLS algorithm will manipulate one very large inverse correlation

matrix per axis: Q(n) € RM*S**M+5*) and requires O{(M+S+1)’} operations per time step. Method 2 is, therefore,
computationally more expensive than method 1.

4. FEEDBACK ADAPTIVE FILTERS

Feedback adaptive filters use the same single channel transversal filter structure as the feedforward controllers. The error
sensor (OT-2 for our experiment) always contains a residual noise signal that is utilized in the feedback adaptive filter to
create a reference signal [9]. This techniques is similar to the feedforward controller, however it internally generates its
own reference signal using the adaptive filter output, y(n), and the error signal, e(n), as described by Equation 15 [9].

r(n) = d(n) = e(n) +5(n) * y(n) (15)

Comparing the feedforward and feedback algorithms in Figures 3 and 6, respectively, shows their near identical
structure. The reference signal is essentially an estimate of the primary noise source from Equation 2 and, therefore,
given the distinction 4(n) [9]. The secondary plant estimate, S(z), is the same that is employed for the Filtered-X

method. Kuo shows that under ideal conditions, when S(z) = S(z), the feedback method is transformed into the
feedforward method [9]. As a result, the performance of the feedback controller compared to the feedforward controller
depends on obtaining an accurate secondary plant model with our system identification methods versus the quality of the
feedforward reference sensor measurement.

The feedback controller uses the same Filtered-X method and bias estimator as described in the previous sections.
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Fig. 5. Feedback adaptive filter
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4.1 Parallel PI controller

Initial testing with the feedback controller consisting only of an adaptive filter showed instability when the DC
component of the error signal was large. In other words, when the beam was given a large initial bias error in addition to
the jitter disturbances, the feedback controller would behave erratically. The internal bias estimator in the adaptive filter
seemed to not work as anticipated. However, when the bias error was small, the feedback controller behaved properly.

It is difficult to fully explain this instability; however, it is thought to be due to a large initial transition of the estimated
reference signal when the controller is switched on. This theory is based on similar experience with a feedforward
adaptive filter with a reference sensor placed downstream of the control actuator. When control was initially applied, and
the bias error was corrected, a large DC shift in the reference signal resulted and caused instability. The feedback
adaptive filter derives its reference signal from a downstream sensor (error sensor) and, thus, results in a large initial
transition in the DC component.

As a solution to improve the robustness of the control method and allow for large DC biases, a proportional-integral (PI)
controller was placed in parallel with the adaptive filter. This technique is similar to the feedback adaptive filter research
done in [4]-[8], the only difference is our adaptive filters use the more classical transversal filter structure while Gibson
et. al employ a lattice structure.

An error PI controller applies fixed gains (K, and K;) to the error signal and the integral of the error signal. The PI
control law is shown in Equation 16 [11].

Yyu(m) =K, -e(n)+K, -Ie(n)dn (16)

This classical linear time-invariant control technique works to push the error signal towards zero. With the PI controller
placed in parallel with the adaptive filter, it removes the initial bias error so that adaptive filter only must reject the jitter
and not the DC bias.

primary plant target sensor

distrubance source  v(n) d(n) + e(n)
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Fig.6. Feedback adaptive filter with parallel PI controller

4.2  Hybrid adaptive filter

A combination of the feedback and feedforward methods is refereed to in the literature as a hybrid adaptive filter. To
accomplish this we simply place feedback and feedforward adaptive filters in parallel [9]. This method utilizes both the
reference signal(s) and the internally generated reference signal. For the same reasons mentioned in the previous section,
a PI controller was placed in parallel with the hybrid controller for the experiments. The hybrid controller uses parallel
adaptive filters, and therefore, as mentioned earlier, cannot be mathematically analyzed.
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Fig. 7. Hybrid adaptive filter implementation, parallel PI controller not shown.

5. EXPERIMENTAL RESULTS

Several experiments with various scenarios were run on the testbed to explore the capabilities of the proposed control
techniques. Table 1 summarizes the characteristics of the disturbances and their individual contributions to the beam
position error at the target. The path length of beam was approximately 1 meter, therefore um and pradians are essentially
interchangeable. The data is reported as the standard deviation, o, of the jitter radius. Experiments were conducted with
the target sensor in two different positions (on and off the vibration platform). The effects of the disturbances vary
between the two positions.

Table 1: Disturbance Characteristics

Bias Narrowband
Target Broadband (DFSM) Total Jitter
(DO) (Shakers)

40 Hz, 0 = 40 pm
Off-board  =1000 pm 0 - 200Hz, o = 51 um band-limited white noise o=71 pum
60 Hz, 0 =~ 30 um

40 Hz, o0 = 18 um
On-board ~1000 pm 0 - 200Hz, o ~ 48 um band-limited white noise 0~ 52 um
60 Hz, 0 = 17 pm

5.1 Reference Signal Correlation Experiment

In order to give more insight into the performance of the developed control laws an experiment was conducted to
characterize the degree of correlation between the various reference signals and the disturbances. Using experimental
data from the error and reference sensors, the optimal Wiener jitter rejection, Yoma from Equation 4, was calculated
comparing each individual reference signal and disturbance source. Therefore, the results in Table 2 represent the best
case scenario for a given reference signal. Included in Table 2 is the primary noise estimate from feedback adaptive filter
and the fully coherent off-board PSD.
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Table 2: Optimal Wiener jitter rejection, Yo,ma« from Equation 4

Primary noise Off-board PSD On-board PSD Accel. Accel. Accel.

R;ifgle;i:ce estimate, d (n) (coherent) (semi-coherent) X-axis Y-axis Z-axis

45 stgs. 45 stgs. 45 stgs. 45 stgs. 45 stgs. 45 stgs.

Axis Axis Axis Axis Axis Axis
PSD Axis:
1 2 1 2 1 2 1 2 1 2 1 2

DFSM 0.932 0914  0.958 0.959 0.958 0.957 0.081  0.144 0.098 0.151 0.093 0.120
Shaker 1 0.965 0.953  0.958 0.953 0.950 0.938 0.568  0.684 0.825 0.850 0.951 0.928
Shaker 2 0.953 0.947  0.954 0.946 0.624 0.933 0.923  0.893 0915 0.893 0.953 0.913
Both Shakers 0.951 0.954  0.951 0.944 0.636 0.889 0.553  0.663 0.875 0.853 0.951 0.933
All Dist. 0.946  0.931 0.833 0.841 0.578 0.692 0.290  0.275 0.342 0.408 0.411 0.402

For attenuating all disturbances, the off-board PSD reference signal performs significantly better than the on-board PSD.
Also, as expected, the accelerometer reference signals are successful at rejecting the shaker disturbances but completely
ineffective for control of the DFSM disturbance.

Due to the two orthogonally mounted shakers, the vibrational disturbance is complex and along all three axes of the
platform. As a result, it is difficult to choose a proper signal from the 3-axis accelerometer to use as one of the multiple
feedforward reference signals. For this research, the accelerometer signal that produced in best results Table 2 was used.
Therefore, the Z-axis accelerometer signal was used for both axes of the control law (Axis-1 and Axis-2). In a more
complex system with many sources of vibration this technique may not be appropriate. In such a system, the signals
from all three axes of the accelerometer could be incorporated into the control law.

5.2 Feedforward Adaptive Filter Experiments

The first series of experiments tested the multiple reference signal feedforward adaptive filters against the single
reference signal method from [1]-[3]. Our goal is to show that multiple semi-coherent reference signals can be employed
when a obtaining a fully coherent signal is not possible. Both FX-LMS and FX-RLS adaptive filters were tested using
both methods 1 and 2 for combining the semi-coherent reference signals. The target sensor (OT-2) was placed both on-
board and off-board the platform to imitate various beam control scenarios.

The filter parameters (convergence factor, number of stages, etc.) were determined by trial and error to maximize
performance of each control law while staying within the capabilities of the control computer. A RLS forgetting factor of
A =0.99 and LMS convergence factor of g = 0.5 was used throughout all of the experiments. The convergence factor for
the LMS method (which uses a finite step method) was chosen to maximize steady jitter rejection at the cost of a longer
convergence times. The LMS method also preformed best with a single stage, versus the RLS method which required
many stages to achieve maximum performance.

To characterize the performance of the various control laws, Ycononea from Equation 5, was calculated for each test along
with the convergence time of the control law. The convergence time was defined as the time necessary to achieve 99
percent of steady state performance. Results for the feedforward are summarized below in Table 3.
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Table 3: Feedforward Adaptive Filter Experimental Results

Jitter Rejection

Controller Yconrolled (Eq 5) C()Tr*ll‘:g;ge
g;(liiltg PS(lgoi;gs Aéi;:l g(r)% Reference Signal Axis-1 Axis-2
FX-LMS 1 (off) 0 Off Off-board PSD (coherent) 0.893 0.864 0.8s
FX-LMS 1 (on) 45 Off  Multiple (semi-co), method 1 0.914 0.878 12.5s
FX-LMS 1 (on) 45 Off  Multiple (semi-co), method 2 0.892 0.842 12.5s
FX-RLS 55 (off) 0 Off Off-board PSD (coherent) 0.785 0.799 0.8s
FX-RLS 10 (on) 45 Off  Multiple (semi-co), method 1 0.895 0.919 0.6s
FX-RLS 10 (on) 45 Off  Multiple (semi-co), method 2 0.895 0.921 0.7s
FX-LMS 1 (off) 0 On Off-board PSD (coherent) 0.770 0.595 0.3s
FX-LMS 1 (on) 45 On  Multiple (semi-co), method 1 0.895 0.892 6.5s
FX-LMS 1 (on) 45 On  Multiple (semi-co), method 2 0.871 0.858 8.7s
FX-RLS 55 (off) 0 On Off-board PSD (coherent) 0.771 0.606 0.3s
FX-RLS 10 (on) 45 On  Multiple (semi-co), method 1 0.885 0.900 0.7s
FX-RLS 10 (on) 45 On  Multiple (semi-co), method2 0.892 0.896 0.5s

The multiple reference signal method preformed as well, or better, than the single fully coherent reference method in
terms of steady state jitter rejection. The multiple semi-coherent signals provide more information to the control law than
the single reference signal. The performance of method 1 versus method 2 for combining the reference signals was
nearly identical. Method 1 is the less computationally expensive technique and is, therefore, considered the superior
method. With the FX-LMS weight updating algorithm, multiple reference signals did take significantly longer to
converge to a steady state. The results were consistent with the target sensor mounted both on or off the vibration

platform.

Along with the tabulated results above, power spectral density (PSD) plots and jitter time history plots were created. A

sample of these plots from the FX-RLS off-board experiments is shown in Figure 9.
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Fig. 8. Comparison of FX-RLS feedforward controllers with off-board target. Control was turned on at t = 5 seconds.

5.3 Feedback and Hybrid Adaptive Filter Experiments

The second set of experiments tests the feedback and hybrid techniques developed in Chapter 4 to the best performing
feedforward method from the previous section. The goal is to verify whether or not using a feedforward reference sensor
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is beneficial. Like in the previous section, the filter parameters were determined by trial and error and the same
convergence and forgetting factors were used. The feedback and hybrid methods use a parallel PI controller and the
gains were tuned to K, = 0.05 and K= 200. The results are tabulated below.

Table 4: Feedback/Hybrid Adaptive Filter Experimental Results

Controller Jitter Rejection

Vconrolled (Eq 5) Converge
. - PSD Trg. Time

Weight d(n) Stgs Accel Pogs Reference Signal Axis-1 Axis-2 (seconds)

Update Stgs (pos) Stgs

FX-LMS 0 1 (on) 0 Off Feedforward 0.914 0.878 12.5s
FX-LMS 1 0 0 Off Feedback 0.916 0.912 38s
FX-LMS 1 1 (on) 30 Off Hybrid 0.908 0.909 38s
FX-RLS 0 10 (on) 45 Off Feedforward 0.895 0.921 0.7s
FX-RLS 50 0 0 Off Feedback 0.928 0.917 0.5s
FX-RLS 10 10 (on) 30 Off Hybrid 0.935 0.931 04s
FX-LMS 0 1 (on) 0 On Feedforward 0.895 0.892 6.5s
FX-LMS 1 0 0 On Feedback 0.849 0.893 49s
FX-LMS 1 1 (on) 30 On Hybrid 0.896 0.905 6.5s
FX-RLS 0 10 (on) 45 On Feedforward 0.885 0.900 0.7s
FX-RLS 50 0 0 On Feedback 0.897 0.887 0.3s
FX-RLS 10 10 (on) 30 On Hybrid 0.922 0.916 0.5s

Testing the various control laws reviled that, overall, the feedback method had superior performance over the
feedforward method. The hybrid adaptive filter achieved still better results. This verifies the statement made in Chapter

4, that depending on the quality of the secondary plant model used to estimate the primary noise source (07 (n)), the
feedback method may perform better than feedforward.

5.4  Conclusion

Adaptive filter control techniques are very complex and it is difficult to determine performance with classical analytical
methods. Verification by experiment is always necessary during the design of these techniques. Such was the case here,
where the limiting factor between the performances of feedback versus feedforward adaptive filters was the quality of
the secondary plant estimate versus the quality of the disturbance measurement from the reference sensor(s). Both of
which are difficult to directly quantify and compare.

The results of the experiments in this paper can be summarized in the following statements: For optical beam jitter
control using a FSM, it is viable to employ multiple semi-coherent reference signals in a feedforward adaptive filter
when a single fully coherent reference signal is not available. The feedback adaptive filter performs better than
feedforward, however, when a feedforward reference sensor(s) is available, it may be beneficial to employ it in a hybrid
adaptive filter control scheme.
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