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ABSTRACT

This paper concerns the shape control of composite material plates using piezoelectric actuators. A finite element
formulation is developed for modeling a laminated composite plate that has piezoelectric actuators and sensors. To improve
the accuracy of the prediction of the plate deformation, a simple higher-order deformation theory is used. The electrical
potential is treated as a generalized coordinate, allowing it to vary over the element. For the shape control, an optimization
algorithm, based on finite element techniques, is developed to determine optimal actuator voltages to minimize the surface
error between the desired shape and actual deformed shape. The error function for a plate element is determined by
calculating the mean square of the surface error over the surface, instead of determining it only at the node points of the
element. Based on these techniques, Matlab codes were developed. Analyses were performed to determine optimum
actuator voltages. The analytical results demonstrate the feasibility of using piezoelectric actuators for the active shape
control of spacecraft reflectors.
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1. INTRODUCTION

In general, smart structures are the elements of system that are able to sense the state of structure and change it as
the system demands. There have been a number of recent studies1 on the use of smart structures for vibration control, shape
control, and noise reduction. Some of these applications are for spacecraft antennas to compensate for surface errors
introduced by manufacturing errors, thermal distortion in orbit, moisture, material degradation, and creep. They can be also
used to change antenna beam shape in-orbit as the demand for antenna coverage changes. They may be used for submarine
and helicopter shape control. An aeroelastic application to aircraft structures is quasi-static control of camber, dynamic
control, and flutter suppression. Smart structures can be used in acoustic control by developing adaptive structures in which
the structural response can be modified with varying input disturbances. A number of materials are available which may be
used as sensor or actuator elements of smart structures. These material include piezoelectric polymers and ceramics, shape
memory alloys, and optical fibers. While substantial research effort has been devoted to the use of smart structures for active
vibration suppression, considerable less attention has been focused on the use of smart structures for shape control.

Active vibration and shape control using smart structures is an active area of research at the Spacecraft Research and
Design Center at the Naval Postgraduate School. This paper presents the recent results on the shape control of composite
plates, a common structural element for aerospace structures, using piezoelectric actuators. Although piezoelectric actuators
are limited to the production of relatively small deformation, their application may be more than adequate for certain
applications, such as compensating for thermal distortion and manufacturing errors in precision spacecraft antennas.

The research work presented in this paper is performed in three parts. First, a finite element model of
graphite/epoxy laminate plate is developed using a simple higher-order shear deformation theory. Generally, classical plate
theory has been used in which it is assumed that normal to the mid-plane before deformation remains straight and normal to
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the mid-plane after deformation. This theory under predicts deflection and over predicts natural frequencies and buckling
loads. These errors are due to the neglect of transverse shear strains in the classical theory. Several higher-order laminated
plate theories have been proposed. However, a compromise is required between accuracy and ease of analysis. A simple
higher-order theory described by Reddy2 is such a theory, as it accounts not only for transverse shear strain but also its
parabolic variation across the thickness of the plate. This theory is used in this paper in the development of the fmite
element model. In the second part, a finite element model is expanded to include distributed piezoelectric actuators and
sensors. The electric potential is treated as a generalized electric coordinate, like generalized displacement coordinate. This
approach allows the variation of electric potential across the surface of the element. In the third part, an optimization
algorithm is developed to determine optimal actuator voltages to minimize the error between the desired shape and the actual
shape. A few studies have been done on the shape control. Ghosh3 showed a model for plate shape control by using PZT,
Agrawal4 developed a mathematical model for deflection using a finite difference technique and estimated the optimal
actuation voltages. Koconis5 presented an analytical method to determine the voltages needed to achieve a specified desired
shape with minimum error between the actual shape and the desired shape. The error function is defined as the mean square
of the error between the points in the actual deformed surface and in the desired surface integrated over the surface of the
element. Matlab optimization functions are used for minimizing the error function and determining optimum actuator
voltages.

2. FINITE ELEMENT MODEL

The finite element model of the plate element is based on the following displacement field

U(x,y,z) = uo + - 4(J2] (1)

V(x,y,z) =v0 +[0 4z)2]
W(x,y,z) = W0
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Figure 1. Deformation of the plate element
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where U0, V0, and W0, as shown in Fig. 1, are the displacement of a point on the mid-plane in X, Y, and Z axes,respectively;
are the average rotations about the Y and X axes, respectively, of the normal to the mid-plane of the undeformed plate;

z is the distance of a point from the mid-plane along the Z axis, and t is the thickness of the plate.

and

The strain at any point is given by

= U0;
= V0;

= U0 +V0;

ex =Ø+J4';

=

K = —4(2 ô2w/4i + øxO,y + / 3t2); (3)
The strain terms include linear strain, curvatures, twists and higher-order curvatures.

A composite plate with distributed piezoelectric actuators and sensors is shown in Fig. 2. A typical
elastic/piezoelectric structure is composed of a aluminum or graphite/epoxy structure with bonded or embedded piezoelectric
sensors and actuators.
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Figure 2. Composite Plate with distributed piezoelectric sensors and actuators

where;

z2

0

0

0 +z3

K

K

0

0

0

0

(2)

V1_d%
11,

—

K = ck0, +

K. =—4(v/+ç40)/t2;
K = —4(v/+ç4,0)/t2;

K = —4(6w/2 + cb0,) I (3t2);

K = —4(ôw/c'2 + 1 (3t2);

/1//



The linear piezoelectric constitutive equations coupling the elastic field and electric field are expressed as:

{D} = [e]T{e} +[es]{E} (4)

{a•} =[c]{e}—[e]{E} (5)

where D is electric displacement (C/rn2), e is dielectric permitivity matrix (C/rn2 ), c is strain vector, Cs 15 dielectric matrix at
constant mechanical strain (F/rn), E is electric vector (V/rn), o is stress vector (N/rn2), c is elasticity matrix for a constant
electric field (N/m2).

It is assumed that the principal material coordinates coincide with the coordinates of the element. For the material
having orthohomic mm2 symmetry, including piezoelectric effects, and plane stress conditions; the constitutive relations are
given by

D 0 0 0 e15 0 'y i 0 0 E
D = 0 0 e24 0 0 + 0 622 E (6)

D 32 0 0 e 0 o
.yz

a 12 0 0 0 0 0 e31

o-y 21 22 0 e 0 0 e32 E
o-xy 0 0 C44 0 0 0 0 E (7)

o-xz 0 0 0 C55 0 e 0 0 E
o-yz 0 0 0 0 c66 0 0 0

Hamilton's Principle is used to determine the equations of motion. The Lagrangian Z of a piezoelectric body is
defined in terms of kinetic energy and potential energy (including strain and electrical energies). The Lagrangian for a
piezoelectric body is

z= J[!p{}T{} 1({}T{} {E}T{D})v (8)

where j is the velocity and V is piezoelectric volume. For non-piezoelectric elements, the last term in Lagrangian due to
electrical energy will be absent. The virtual work done by the external force and the surface charge density, ,applied to the
piezoelectric body is

6w=J1{&J}T{P}dsi _J2/1ds2 (9)

where s1 and 2 are the surfaces at which the mechanical loads are applied, respectively, P5 is a surface load and 1 is the
electric potential.

Hamilton's principle is

+ W)dt = 0, (10)

where t1 to t2 is the interval, and all variations must vanish at t = t1 and t = t2.
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Substituting Eqs (8) and (9) into Eq. (10), we get

J[p{oq}T{} + {}T[c]{s} -{&}T[e]{E} -{}T [e]T {e} - {}T[s]{E}
=0

To generate the electro-elastic matrix relations, it was assumed that the surface of the piezoelectric layers which are
in contact with the laminated substructures are suitably grounded. Also, since the thickness of the piezoelectric layers is very
small, it is reasonable to assume that the electric potential functions, which yield zero potential at the interface between the
actuator and laminated substructure and provide a linear variation across the thickness of the sensor or actuator layer,are as
follows:

(12)

where I can be treated as the generalized electric coordinate similar to the generalized displacement coordinate at the mid-
plane of the plate element.

2.1 Finite Element Formulation

The objective is to define the degrees of freedom U0, V0, , , W0, and 1 in the plate in terms of nodal
displacements, rotations, and electric coordinates by using a bilinear, isoparametric, rectangular element with four nodes.
Each node of the element has eight degrees of freedom. Similar interpolation functions are used for displacements U0 and

V0, rotations xO and yO and electrical coordinate .They are defined by

p=Np1 (13)

where p is the value of the variable at any point in the element, p1 is its value at node point and N1 is the interpolation
function, which in the natural coordinate system (,i) is

N (14)

where and i are the local coordinates of the point, and = -1,1,1,-i and i, = -1,-1,1,1 for i = 1,. . . ,4, as shown in

Fig.3.
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Figure 3 Actual and Master Element
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The transverse displacement is interpolated using a non-conforming shape function which can be given by:

wo'

w,x1

w,y1

w02

w(x,y)=[fg1If2g2f3g3hf4g4h4]. (15)

w,x4

w,y4

where for i = 1, . . .

fi
g = (a/16).(1+ )2(1 + ip)( —1)

h, = (16)
where

=2(x—x)/a, =2(y—y)/b, (17)

The nodal displacement vector {q1} at the first node point on the plate element is

{q1}
=

[u0, V01 øxOl vO W0 W W]T (18)

and the element displacement vector {q,} is

{q} = [qi q2 q3 q4]T (19)
The generalized displacement vector at a point is

q} = [u0 v0 q50 w0 w0 (20)

The generalized electric coordinate at the ith node of element is and the element nodal generalized electric
coordinate vector is given by

{} = e]T (21)

Substituting displacement and electric coordinates in terms of nodal coordinates, the equations of motion for the
element, using Eq. (11), becomes

[MeJ{e}+[kqq]{qe}[kq]{}{PM}

[kq]{qe} + [k]{} = {g} (22)
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It should be noted that the mechanical equation is coupled with the electrical equation and {PM} is the mechanical

excitation and {g} is the electrical excitation. [Me] is element mass matrix, [k] are stiffliess and interaction matrices
between actuator potential and displacement. Assembling the element equations and using a constraint equation, the
equation of motion of the structure system is obtained.

3. SHAPE CONTROL

The objective is to determine optimum actuator voltages for given actuator locations to minimize the error between
the desired shape and achieved shape. The analysis is based on the small deformation theory. Figure 4 shows the original
surface, deformed surface with the application of actuators, and desired surface.

&

Figure 4 Original Surface, Actual Surface, and Desired Surface in the x-z plane

The error function takes the form:

A=fA2dxav (23)

where A is the error function of the ith element, Q is the element domain, A represents the difference between the z-
coordinate on the reference surface of the desired shape and the z-coordinate of a corresponding point on the actual deformed
surface. The error function of the total surface will be the sum of the error function of each element and is given by

From Figure 4, the distance A is defined as:

A=A

A = (z0 + &) — (zdes + &des)

(24)

(25)

To evaluate each term in this equation, we consider a nodal point A on the original reference surface at (x0, y0).
Thus z0 is the z coordinate of the point A on the original reference surface, 6z is the difference between the z-coordinate of
point A on the original surface and the z coordinate of the corresponding point A' in the actual surface, which can be
expressed as:
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(ôz &
&oU+V+WJ (26)

where u, v, and w are the displacement of the node A and Zdes5 the z-coordinate of point B on the desired reference surface

at (x0, Yo)

The point on the desired reference surface corresponding to point A' on the actual reference surface is point A"
located at (x0 + 6x0, y + 6y). SZdes5 the difference between z-coordinates of point A" and B. It can be approximated by the
first two terms of a Taylor series expansion.

&des (dCS)& +deSJ (27)

The distances ox0 and öy0 are the changes in the x and y coordinates between A" and B and are given by

( (
6YoVW) (28)

The following parameters are introduced which depend on the geometry of the original and desired surface,

Th =i+(sJ()+(J(J (29)

( ( des ( (des

By using these parameters, the objective function will take the form:

A'e , [(z0 _Zdes)+17lW+772U+773V]dXd) (30)

Similar to the previous section, we use finite elements, representing displacements in terms of nodal coordinates.
The displacements at the nodal points can be expressed in terms of actuator voltages from Eq. (22). Using these
transformations, the error function for one element in master element coordinates is written as:

A = C1'L[(zo(, 17) -Zdes (, 17)) + 171 (, 17)(V) + 12(, i7)11(V) + 173(,17)V(v)] Jd4d17 (31)

where and 17 are the coordinates of the master element and is determinant of the Jacobian matrix of transformation.

The structure objective function is defined as the summation of the error function for each element as follows:

A=A (32)

subjected to constraint
Lower limit � V � Upper limit

where n is the number of elements and V is actuator electric potential.
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4. OPTIMIZATION

Matlab optimization functions f-mm and f-mins are used to find optimum actuator voltage to minimize the objective
error function. The f-mm function is used to minimize a function of one variable on a fixed interval. The problem is
mathematically stated as:

minimize f(x) (33)
x

subjected to: x1 � x � x2
where f(x) and x are scalars. The f-mm function is used to optimize the objective function when the same voltage is applied
to all actuators. The function permits putting a constraint on the maximum value of the actuator voltage.

The function f-mins is used to find the minimum of a scalar function of several variables and is mathematically
stated as

minimize f(x) (34)
x

where x is a vector and f is a scalar function. This optimization function does not provide constraint on x and is generally
referred to as unconstrained nonlinear optimization. The function f-mins is used when different voltages are applied to the
piezoelectric actuators (V is a vector). In this case we can not impose a constraint on the maximum value of the voltages. f-
mins uses the simplex search algorithm of Nelder and Mead.

5. NUMERICAL ANALYSIS

Based on the techniques discussed in the previous sections, two Matlab codes were developed. The first code
COMPZ is a finite element code to solve a laminated plate with piezoelectric actuators and subjected to mechanical and
electrical loads. The second code OPTSHP determines change in the shape of the plate due to the application of actuator
voltages and computes optimum actuator voltages to minimize the objective function.

To validate the code COMPZ, the results from this code for a composite plate with piezoelectric actuators were
compared with the analytical results from Ref. 6 and finite element results from Ref. 7. The example used is a square plate
consisting of a three-layered cross-ply laminated plate with the thickness 3 mm. Piezoelectric PVDF layer of 4Oim was used
and it covered the whole surface.

E11= 172.4 GPa (25x 106 psi) E22=6.9 GPa (106 psi);
G12=G13=3.45 GPa (0.5x 106 psi); G23=l .38 GPa (0.2x 106);
v12=v13=0.25

The piezoelectric PVDF layers properties are:
Dielectricity

Dielectric permittivity 0.1062 x iO F/rn
e31 = 0.0460 C/m2 11

e32
= 0.0460 C/rn2 622 0.1062 X l0 F/rn

e33 = 0.0000 C/m2 633 = 0.1062 x l0 F/rn

Poisson ratio v = 0.29
Mass density p = 0.1800 x iO kg/m3
Modulus of elasticity E=2 x 10M N/m2
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The mechanical loading and the electrical potential distribution is described by:

and
q = q0sin(iix/a)sin(uiy/b)

= Vsin(svc/a)sin(rcy/b);
where q0 is the intensity ofload per unit area (N/m2), V is the amplitude of in volts, and h0 is the height of
piezoceramic outer layer. The deflection is normalized as:

— 100ETw= w
q02h

where ET S the transverse Young's modulus of the graphite/epoxy layers, , is the span to the thickness ratio, and h is the
structure thickness

Figure 5 shows the bending deflection at the center verses length to thickness ratio for the plate subjected to a
double sinusoidal mechanical load. Figure 6 shows the bending deflection at the center verses length to thickness ratio for
the plate subjected to a double sinusoidal distribution for both mechanical and electrical loads. The results generated by
using COMPZ are compared with analytical results from Ref. 6 and finite element results from Ref. 7 and are found to be in
good agreement. These results validate the present finite element model, COMPZ.

Figure 5. Center Deflection vs. Length to Thickness ratio
for a Plate Subjected to a Double Sinusoidal
Mechanical Load

Figure 6. Center Deflection vs. Length to Thickness ratio
for a Plate Subjected to Double Sinusoidal
Electrical and Mechanical Loads

To demonstrate the use of OPTSHP to determine optimum actuator voltages, a square O.45m X O.45m plate with
three layers (00/900/00) is used and piezoelectric actuators are placed on the top surface. The length to thickness ratio equals
to fifty. The plate is divided into nine elements, as shown in Fig. 7. The properties of the graphite/epoxy and piezoelectric
actuators are the same as in the previous example.
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Figure 7. Finite Element Model of Composite Plate with Piezoelectric Actuator

The original shape is chosen as a flat plate (z0) and the desired shape is selected as

Zdes 1 x iO- x2 - 4.2 X 1010xy + 6 x 10-8 y2 (35)

Table 1 gives the optimum voltages and error function when two actuators are used. Table 2 gives the optimum
voltages and error function when four actuators are used. In both cases, the optimization program f-mins is used to
determine optimum actuator voltages and voltages are unconstrained. The results show that the locations of the actuators
have significant influence on the optimum voltages and the error function.

Table 1 . Optimal Actuator Voltages and Error Functions for the Case of Use of Pair of Actuators
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Actuators Positions Minimum Applied

Voltages (Volt.)

Minimum Error

Function

Elements #S 1 & 7 V1 = 41.612 V7 =47.265 f= 5.78007896e-18

Elements #S 2 & 8 V2 = 35.943 V8 = 39.934 f= 4.74678213e-l 8

Elements #S 3 & 9 V3 = 85.710 V9 = 90.547 f= 4.0583368e-l8

Elements#s1&3 V1=-26.368 V3=175.055 f=4.10114654e-18

Elements #S 4 & 6 V4 = -8.231 V6 = 79.660 f= 4.01544062e-18

Elements #S 7 & 9 V7 = 26.0895 V9 = 175.193 f= 4.09288468e-l 8

Elements #S 1 & 9 V1 =-l7.007 V9 =170.053 f= 4. 10970645e-l8

Elements#s3&7 V3=l69.712 V7=-16.l38 f=4.12087738e-18

Table 2. Optimal Actuator Voltages and Error Functions for the Case ofUse of Four Actuators

Actuators Positions Minimum Applied Minimum Error

Voltages (Volt.) Function

Elements #S 1 3, 7 & 9 V1 = -2L060 V3 = 98.104 f= 4.0531 138e-18

V7= -16.473 V9= 101.482

Elements #S2, 4, 8 & 6 V2 18.404 V4 = -29.429 f= 4.0153 1283e-18

V6 65.262 V8 = 22.349

7 8 9

4 5 6

1 2 3
y

b

X74__a



6. CONCLUSIONS

A finite element model was developed for composite plates with pizoelectric actuators and sensors. The plate was
composed of distributed sensors and actuators made of PVDF or PZT and a laminate of graphite/epoxy layers. A simple
higher-order deformation theory was used. A Hermite cubic interpolation function was used to approximate the transverse
deflections. This method does not suffer from shear correction which is problematic in the first-order shear deformation
theory. The displacement model includes the parabolic distribution of the transverse shear stresses and the non-linearity of
in-plane displacement across the thickness. Seven degrees of freedom were used at each node. The number of degrees of
freedom used in the present model is one third the number of degree of freedom of the element used in the model developed
based on higher-order shear deformation theory. The electric potential was treated as a generalized electric coordinate like
generalized displacement coordinate. A Matlab code 'CMPZ' was developed using this approach. The numerical results
generated by the developed code agree very well with the analytical solution and other published finite element results.

For shape control, an objective error function was formulated which is a summation of the mean square error
between a point in the actual surface and a corresponding point in the desired surface integrated over the element surface.
This approach is an improvement over the method where surface error is determined only at the nodal pints. Matlab
optimization functions f-mm and f-mins were used to determine optimum actuator voltages in order to minimize objective
error function. A Matlab code 'OPTSHP' was developed using this approach for shape control. The numerical results
demonstrate the feasibility of using piezoceramic actuators for correcting antenna surface errors.
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