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Abstract. This paper presents the analytical and experimental results on optimal placement
of piezoceramic actuators for shape control of beam structures. The objective is to determine
the optimum piezoceramic actuator locations and voltages to minimize the error between the
desired shape and the achieved shape. The analytical model for predicting beam deformation
due to a piezoelectric actuator is based on the Euler–Bernoulli model. The cost function has
fifth-order polynomials in the actuator locations and second-order polynomials in actuator
voltages. This difference resulted in difficulty in simultaneous optimization of actuator
locations and voltages. Using embedded Nader and Mead simplex algorithms to separately
optimize actuator locations and voltages was found to produce reliable results, converging to
the same optimum solution for a variety of initial conditions. Experimental results show that
the analytical model provides a reasonable prediction of actuator performance at low input
voltage, but does not account for the nonlinear behavior of the piezoceramic and effects of
hysteresis.

1. Introduction

For a communications satellite designer, providing precision
surfaces for antenna reflectors has been a challenging
problem. Surface errors are introduced by manufacturing
errors, thermal distortion in orbit, moisture, loose joints,
material degradation and creep. These reflectors are made
of graphite–epoxy structures because of requirements for
low thermal distortion. Significant time and cost are spent
during fabrication, analysis and ground tests to minimize and
determine the surface errors. Even with this effort, several
current spacecraft antennas have experienced degraded
performance due to higher than predicted surface errors.
Smart sensors and actuators with the ability to correct on-orbit
surface errors have great potential for use in these microwave
devices. Smart actuators can also provide a desired change in
antenna beam shape due to change in coverage requirements.
Therefore, smart structure technology has the potential of not
only improving the performance of these structures, but also
reduction in cost for analyses and ground tests.

A number of smart materials are available which may
be used as sensors or actuators. These materials include
piezoelectric polymers and ceramics, shape memory alloys,
electrorheological fluids and optical fibers. While significant
research effort has been devoted to the use of smart structures
for active vibration suppression, considerably less attention
has been focused on the use of smart structures for shape
control. At the Spacecraft Research and Design Center
(SRDC) at the Naval Postgraduate School active vibration
control and shape control using smart materials is an active
area of research. This paper presents recent analytical
results of research work at SRDC on shape control using

piezoelectric actuators. Although piezoelectric materials
have relatively small dimensional change capability, they
are more than adequate for certain applications, such as
countering thermal distortion and manufacturing surface
errors in microwave devices. The research work examined
the application of piezoceramic actuators and sensors for the
shape control of a beam, a common structural element for
large deployable antenna structures.

2. Analytical model

The beam under consideration is shown in figure 1. It is
a cantilever beam with piezoceramic actuators bonded at
locationsxi (i = 1, 2, . . . , n).

To determine transverse deflection of the composite
beam, i.e., beam plus piezoceramic actuator, Euler–Bernoulli
beam theory is used instead of plate theory. Euler–Bernoulli
beam theory assumes that the transverse component of
normal stress is negligible in comparison to the axial
component. Therefore, the relation between actuator strain
and stress is given by the following equation

σ1 = E1 (ε1− d31φ3) (1)

whereσ1 is the actuator stress in direction 1 (x), E1 the
modulus of elasticity of the actuator in direction 1,ε1

the strain of the actuator in direction 1,d31 the lateral
charge coefficient of the actuator with poling direction along
direction 3,φ3 the electric field= V/tp,V the applied voltage
andtp the actuator thickness.

Crawley and Anderson [1] compared two models
of beam curvature due to induced strain actuation by
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Figure 1. Beam with attached piezoceramic actuators.
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Figure 2. Linear strain distribution for Euler–Bernoulli beam.

piezoceramic actuators bonded to beam structures. The
first model, initially presented by Crawley and de Luis
[2], assumed uniform axial strain in a pair of piezoceramic
actuators bonded symmetrically to the outer surface of a
beam undergoing actuator-induced bending. The second
model assumed that the beam behaves as an Euler–Bernoulli
beam, with linear distribution of axial strain throughout
the composite actuator beam cross-section as shown in
figure 2. The predicted beam curvature under both models
was compared to that predicted by a detailed two-dimensional
finite element model. The Euler–Bernoulli model was
found to provide results that are within 0.1% of the finite
element model over the full range of possible actuator-
to-beam thickness ratios, while the uniform strain model
results diverged significantly for actuator thickness greater
than 20% of the beam. The Euler–Bernoulli model was
therefore judged to provide a much more accurate prediction
of beam curvature produced by surface-bonded piezoceramic
actuators.

As an example, for a beam with a symmetric
piezoceramic actuator pair bonded to a section of a beam, as
shown in figure 3, the axial strain aty = 0, ε0, and curvature
κ about thez axis are given by

ε0 = Epd31wp (V1 + V2)

(EA)c

κ = Epd31wp
[
t
2 + tb + tp

2

]
(V1− V2)

(EI)c

(2)

where
(EA)c = Ewt + 2Ebwbtb + 2Epwptp (3)
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w, wb, wp are the widths of the beam, bond and actuator,
respectively;E, Eb, Ep are the modulus of elasticity of
the beam, bond and actuator, respectively;t , tb, tp are the
thickness of the beam, bond and actuator, respectively, and
V1 andV2 are the input voltages to the actuators on the +y

side and−y side of the beam, respectively.
For a beam with a single piezoceramic actuator bonded

to a section of the beam, as shown in figure 4, the axial strain
at y = 0 and the curvature of the composite beam are given
by

ε0 = P3 (EI)c −M3 (ES)c
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P3 = Epd31wpV (9)
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V. (10)

If the deformation of the beam is static and no external
loads are applied, then the deformation of the beam is strictly
a function of the actuator locations, lengths, actuator/beam
curvatures per unit voltage and actuator input voltages. The
beam curvature per unit voltage is given by

Kk = κk

Vk
(k = 1, 2, . . . , n) . (11)

Using the previous equations, the transverse deflectiony(x)

and slopey ′(x) for a beam withn attached piezoceramic
actuators are given by the following equations:

(a) Forx prior to the first actuator

y ′(x) = 0
y (x) = 0

}
(06 x 6 x1) . (12)
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Figure 3. Schematic of stacked piezoceramic actuator pair bonded to beam.
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Figure 4. Schematic of single piezoceramic actuator bonded to beam.

(b) Forx on the first actuator

y ′ (x) = K1V1 (x − x1)

y (x) = K1V1
2 (x − x1)

2

}
(x1 6 x 6 x1 + l1) . (13)

(c) Forx on actuatork

y ′ (x) = KkVk (x − xk) +
k−1∑
i=1
KiVili

y (x) = KkVk
2 (x − xk)2 +
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KiVili
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2

)
(
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)
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(d) Forx between actuatork andk + 1

y ′ (x) =
k∑
i=1
KiVili

y (x) =
k∑
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KiVili

(
x − xi − li

2

)

(
xk + lk 6 x 6 xk+1

k = 1, 2, ..., n− 1

)
.

(15)

(e) Forx between actuatorn and the free end of the beam

y ′ (x) =
n∑
i=1
KiVili

y (x) =
n∑
i=1
KiVili

(
x − xi − li

2

)
 (xn + ln 6 x 6 L)

(16)
(whereli is the length of theith actuator).

3. Optimization

It is desired to determine the optimum location of
piezoceramic actuators, and input voltages to achieve the
desired beam shape. Optimization requires a suitable cost
function to serve as a measure of performance for a given
actuator configuration. The optimum actuator configuration
achieves the absolute minimum value of the cost function
among the set of all possible input variable values, including
actuator position, length and input voltage.

An appropriate cost function for measuring actuator
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performance in the static deflection of a cantilever beam is

J =
L∫

0

[y (x)− yd (x)]2 dx (17)

wherex is the coordinate along the length of the beam and
y(x) andyd(x) are the actual and desired transverse beam
deflections along the beam, respectively, as shown in figure 1.

The actuator locations and lengths are constrained by:

x1 > 0

xi > xi−1 + li−1 (i = 2, 3, . . . , n)

xn + ln 6 L
li > 0 (i = 1, 2, . . . , n) .

(18)

Equations (18) ensure that all the actuators are located
entirely on the beam without overlap and that all have
nonnegative length. Furthermore, the input voltages to the
piezoceramic actuators must lie within an operating range
specified by:

Vmin 6 Vi 6 Vmax (i = 1, 2, . . . , n) (19)

where Vmin and Vmax are the actuator’s minimum and
maximum operating voltages andVi is the input voltage to
theith actuator.

The problem of optimizing equation (17) within the
constraints of equations (18) and (19) can be expressed in
Kuhn–Tucker (KT) form as: minimize equation (17) subject
to:

g1 (z) = −x1 6 0

gi (z) = xi−1 + li−1− xi 6 0 (i = 2, 3, . . . , n)

gn+1 (z) = xn + ln − L 6 0

gn+1+i (z) = −li 6 0 (i = 1, 2, . . . , n)

g2n+1+i (z) = (Vi − Vmin) (Vi − Vmax) 6 0

(i = 1, 2, . . . , n)
(20)

where the vector of input variables,z, is given by

z = [x1...xn, l1...ln, V1...Vn]
T . (21)

The desired shape functionyd(x) is selected to be a
parabolic shape function given by:

yd (x) = Cx2. (22)

The parabolic shape function is selected due to its
applicability to common structures such as antenna reflectors.
Substituting equations (22) and (12)–(16) into equation (17)
gives an expression for the cost function:
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where the coefficientsaij andbij are obtained by rewriting the
beam displacements in equations (12)–(16) as polynomials
in x.

Forx prior to the first actuator:

y (x) = 0 (06 x 6 x1) . (24)

Forx on actuatork:

y (x) = a2kx
2+a1kx+a0k

(
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)
. (25)

Forx between actuatork andk + 1:

y (x) = b1kx + b0k
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)
. (26)

For x between actuatorn and the free end of the beam
(x = L):

y (x) = b1nx + b0n (xn + ln 6 x 6 L) (27)
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4. Algorithm for solution of optimization problem

The MATLAB software package was used for the
development of an algorithm to optimize actuator placement
and voltage for a given shape function and for fixed actuator
and beam dimensions and properties. If the actuator
dimensions and properties are fixed, then the lengthsli and
curvatures per unit input voltage will be constant values.
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Figure 5. Actuator placement optimization algorithm.

The cost function is therefore minimized by optimizing the
remaining variablesxi andVi .

The MATLAB Optimization Toolbox includes three
functions intended for the optimization of multivariable
functions. Two functions,fminu and fmins, perform
unconstrained optimization of the input variables of a cost
function, while one function,constr, performs optimization
of the input variables subject to constraints on their values.
Fmins uses the simplex search algorithm developed by
Nelder and Mead.Fminu uses the quasi-Newton method
of Broyden, Fletcher, Goldfrab and Shanno (BFGS), with a
mixed quadratic and cubic line search procedure to determine
a search direction at each iteration.Constralso uses a BFGS
quasi-Newton method to solve a quadratic subproblem at
each iteration of a sequential quadratic programming routine.
Initial attempts to optimize actuator placement and voltage
simultaneously using these algorithms proved unsuccessful.
Fminsproduced better results thanfminuandconstr, but not
robust for all cases.

A revised approach to the optimization problem was
developed, drawing on the work of Clark and Fuller [3] and
Wang et al [4] to optimize actuator location for acoustic
control. The latter group noted that the mathematical
inconsistency in the order of the voltages and actuator
locations in their objective function requires independent
solutions for the voltages and locations. The same approach
is applied for the present problem. First, given initial
actuator voltages, determine the optimum locations of
the actuators. Next for the calculated optimum actuator
locations, determine the optimum actuator voltages. Next
for the calculated optimum actuator voltages re-determine
the optimum actuator locations. This process is repeated
until we obtain a minimum cost function. This two-stage
solution algorithm was tested forconstr, fminu and fmins.
The fmins simplex search routine was found to be highly

reliable, converging to the same results for a wide range of
specified initial actuator positions. This is consistent with the
observations of Parkinson and Hutchinson [5] who noted that
the Nelder and Mead simplex (NMS) algorithm has proven
to be robust, although less efficient than some unconstrained
optimization algorithms. A block diagram of the algorithm
incorporatingfminsis shown in figure 5.

The outer stage of the algorithm usesfminsto perform a
simplex search to determine the actuator positions for fixed
voltages. The inner stage of the algorithm usesfmins to
determine the optimum actuator input voltages for each set
of actuator positions evaluated by the outer stage.

5. Analytical results

The problem consisted of determining the optimum locations
and voltages for actuators on a one meter long cantilever beam
to best approximate a desired parabolic beam shape with
tip deflection equal to 0.1% of the beam length. The beam
was specified to have the properties of 7075-T6 aluminum,
a width of 5.08 cm (2.00 in) and a thickness of 1.575 mm
(0.062 in). The beam curvature per unit actuator input voltage
was calculated for a symmetrically mounted pair of 0.26 mm
(10 mm) thick Navy Type II piezoceramic actuators covering
75% of the width of the beam. Each actuator length was fixed
at 10% of the overall beam length. The algorithm was tested
with at least four sets of arbitrarily selected initial actuator
locations for each number of actuators to ensure convergence
to the same optimum values. Initial actuator voltages were
the optimum voltages for the initial actuator locations for
each case, determined usingfmins, except when noted.

The deflections of the beam are shown in figures 6, 7, 8
and 9, for one, two, three and four actuators, respectively,
located at the optimum locations and input voltages to
minimize the error between the desired and actual beam
deflection.
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Figure 6. Optimum beam deflection for one actuator.

Figure 7. Optimum beam deflection for two actuators.

The optimization algorithm proved to have minimal
sensitivity to the initial actuator locations specified, with
two exceptions. First, grouping the initial locations for
four actuators adjacent to one another at the center of the
beam, and using optimum voltages for its initial configuration
as an initial estimate for all voltages, prevented the inner
voltage optimization algorithms from converging within
the set of a maximum of 10 000 iterations at some point
during the optimization process. Second, using the same
actuator locations with initial voltage estimates of zero
produced erroneous results. For this case, however, slightly
changing the initial condition to allow 1–2% of the beam

length spacing between the initial actuator positions produced
results consistent with those using other initial conditions.

The results of the actuator voltage optimization
algorithm were compared to the exhaustive searches for all
possible combinations of discrete sets of actuator voltages for
optimum locations of the actuators. Figures 10 and 11 show
the plots of the variation of error with the input voltages for
one and two actuators, respectively. The results validate the
voltage optimization algorithm. The results of the actuator
placement optimization algorithm were similarly validated
by the search method.
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Figure 8. Optimum beam deflection for three actuators.

Figure 9. Optimum beam deflection for four actuators.

6. Experimental results

A schematic of the equipment setup for the four-actuator
shape control experiment to determine the effectiveness of
piezoelectric actuators for shape control is shown in figure 12
and the setup is pictured in figure 13.

Eight piezoceramic actuator patches were bonded (in
four groups of two) to one side of a 0.031 inches (0.79 mm)
thick 7-75-T6 aluminum beam which was cantilevered such
that its length was horizontal and its width was vertical to
allow bending of the beam to take place in the horizontal
plane. The beam was supported at approximately two-thirds

of its length by an air pad riding on a granite table. The beam
had a length of 45 inches (1.143 m), 2 inches (5.08 cm) of
which was held in the clamp, and a width of 1.625 inches
(4.1275 cm). All actuator patches were 2.5 inches (6.35 cm)
long, 1.5 inches (3.81 cm) wide and 0.26 mm thick Navy
Type II piezoceramic. The actuators were placed at locations
on the beam which were determined by the optimization
algorithm to best approximate a parabolic deflected beam
shape. The XANALOG system was used to control actuator
input and record experimental data, and the ANL1651AC
laser displacement was used to measure displacement at
selected points along the length of the beam. Beam surface
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Figure 10. Variation of error with input voltages for one actuator at optimum location.

Figure 11. Variation of error with input voltages for two actuators at optimum locations.

strain was also measured directly opposite the center of the
actuator patch nearer to the cantilevered end of the beam in
each of the four actuator groups using a Measurement Group
Inc. CEA-13-125WT-350 bi-directional strain gage opposite
the other three actuators. Strain gage output was obtained
with a Gould Model 56-1301-00 DC/bridge/transducer signal
conditioner for each gage. DAS16/330 and DDA06 boards
were used for A/D and D/A conversion, respectively. Each
10 volt analog output channel of the DDA06 was amplified
by a 15:1 analog amplifier to provide a 150 volt range of input
to each actuator.

The first phase of the experiment was to determine the

performance of each actuator. Data for beam deflection for
the first actuator are presented in table 1 and figure 14.

The first run was the first use of that actuator on the day of
the experiment. The deflection reading was initialized at the
start of a new run. Some hysteresis and residual displacement
were observed on all measurement runs, but were most
apparent on the first run with a residual tip displacement of
16%. Repeatability of displacement measurement was good
for runs 2 through 4. The relationship between actuator input
voltage and beam tip displacements was nonlinear, as seen
in figure 14. The dotted line represents a second-order least
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Figure 12. Schematic of setup of four-actuator shape control experiment.

Figure 13. Setup of four-actuator shape control experiment.

squares curve fit of the form

y0 (V ) = c0V
2 + c1V + c2 (29)

to the observed displacements as a function of voltage.
Using a linear model, the predicted value ofc1 is 7.92×
10−2 mm V−1. Based on the experimental results, the
values of coefficients for the non-linear model are:c0 =
3.18 × 10−4 mm V−2, c1 = 5.38 × 10−2 mm V−1 and
c2 = −0.10 mm. The performances of the other actuators
were very similar.

The second phase of the experiment consisted of
applying voltages to all four actuators based on an analytical
model, and optimal search routines to minimize the error
between desired parabolic shape and predicted deformed
shape. Table 2 and figure 15 present applied voltages to

actuators, predicted deflections based on the linear model
and the empirical nonlinear model, and the experimentally
determined deflections.

The measured displacements display excellent repeata-
bility and can be seen to agree much more closely with the
beam shape profile predicted using the nonlinear empirical
model than for the profile predicted by the linear model. As
for the single-actuator tests, the linear model overestimates
the actuator performance for the low input voltages and un-
derestimates actuator performance at higher voltages.

7. Conclusions

Piezoceramic actuators have been shown to provide an
effective means of controlling the shape of a thin flexible
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Figure 14. Beam tip displacement for first actuator.

Figure 15. Beam displacement measurements for shape control experiment.

Table 1. Beam tip displacement (mm (% of predicted)) for first actuator.

Predicted 1 2 3 4

25 V 1.47 1.29 (88) 1.31 (89) 1.12 (76) 1.27 (86)
50 V 2.93 3.06 (104) 2.71 (93) 2.67 (91) 2.76 (94)
75 V 4.40 5.45 (124) 4.54 (103) 4.38 (100) 4.45 (101)

100 V 5.86 8.08 (138) 6.44 (110) 6.41 (109) 6.22 (106)
125 V 7.33 11.22 (153) 8.88 (121) 8.47 (116) 8.81 (120)
150 V 8.79 15.05 (171) 11.81 (134) 11.40 (130) 11.62 (132)

0 V 0.00 3.57 0.81 0.31 0.85

beam structure. The location of actuators on a beam structure
is crucial to determining how closely a desired deformation
profile can be approximated. Simultaneous optimization of
the locations and input voltages of a fixed set of actuators to
achieve a desired beam deformation proved to be unreliable
due to differences in the order of the actuator locations
and voltage terms in the optimization cost function. Using
embedded Nelder and Mead simplex algorithms to separately
optimize actuator locations and input voltages was found

to produce much more reliable results, converging to the
same optimum solution for a variety of initial conditions. A
few initial conditions were found to cause the optimization
algorithms to fail to converge or converge to an erroneous
result. Therefore, multiple runs of the optimization should
be performed using different sets of initial conditions to
ensure that globally optimum actuator locations and voltages
are obtained. The significant effects of hysteresis observed
indicate that this effect must also be considered. Actual
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Table 2. Beam displacement measurements (mm) for shape control experiment.

Linear Nonlinear
model model
predicted predicted Run 1 Run 2 Run 3

141.1/150/150/150
V input
x = 0.46 m 5.30 6.65 6.23 6.16 6.17
x = 0.76 m 14.48 18.29 17.76 17.54 17.08
x = 1.07 m 28.33 35.91 37.98 37.54 35.45

shape control applications should incorporate some form
of feedback of the beam’s shape to ensure that the desired
deformation is attained.
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