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A mode synthesis technique is presented for determining the normal modes. natural frequencies. and 
responses of three-dimensional complex structure with flexible joints. Lagrange's equations are used to 
develop the equations of motion of the structures. Based on this technique a computer program called 
MODSYN has been developed for both free-free and cantilever systems. An example demonstrates the 
accuracy of this method. 

Subject Classification: [43]40.20; [43]20.40. 

LIST OF SYMBOLS 

! 

f, 

li 

Distance of the center of gravity of the ith qtrj 
structure from its attachment point to the 
main structure in the jth direction 

Distance from the center of gravity of the qons 
system to the center of gravity of the main ' 
structure in the jth direction for the unde- qor• 
formed configuration 

Total number of generalized coordinates used Q• 
to describe the motion of the system 

Number of elastic modes used to describe the 

motion of the ith structure (i = 0, 1,... ) 
External force at the kth mass of the ith T 

structure (both main and substructure) in fJ 
the •th direction Yl(k) 

Product moment of inertia of the ith substruc- 

ture about its attachment point 
Product moment of inertia of the main struc- 

ture about the center of gravity of the system 
Moment of inertia of the ith substructure 

about its attachment point Y•(k) 
Mass moment of inertia of the main structure 

about the center of gravity of the system el(k) 
0 = l, a) 

Stiffness matrix defining the coupling effect of 
various masses of the system 

Mass point of the main structure where the 
ith substructure is attached 

Mass of the ith structure 

Mass of the main structure 

Inertia matrix 
Modal moment at the attachment point of the 

ith structure in the jth direction due to its 
nth mode 

External moment of the kth mass of the ith 
structure in the jth direction 

Number of mass points in the ith structure 
Column matrix of generalized coordinates 
Generalized coordinates describing participa- 

tion of the nth uncoupled mode of the ith 
beam in free vibration of the system (i = 0, 
1,...;n=l,P.,...,ft) 

Generalized coordinates describing a relative 
rotation motion in the jth direction of the 
joint spring of the branch 

Generalized coordinates describing a relative 
translation motion in the jth direction of the 
joint spring of the ith branch 

Generalized coordinate describing rigid body 
rotation in the jth direction 

Generalized coordinate describing rigid body 
translation in the ]th direction 

Generalized force 

Modal shear at the attachment point of the ith 
structure in the jth direction due to its nth 
mode 

Kinetic energy 
Potential energy 
Coordinate of the center of gravity of the kth 

mass of the ith structure in the jth direction 
measured in relationship to the center of 
gravity of the system (i = 0 for the main 
structure; i = 1,... for the substructure; 
j = 1, 2, 3) in the undeformed configuration 

Translational displacement of the kth mass of 
the/th structure in the jth direction 

Rotational displacement of the kth mass of the 
ith structure in the jth direction 

Modal mass in the nth normal mode of the ith 

structure 

Modal translational displacement of the kth 
mass of the ith structure in the jth direction, 
corresponding to the nth normal mode of the 
ith structure 

Modal translation displacement of the kth 
mass of the/th structure in the ]th direction, 
corresponding to the rigid body lth rotation 
mode (i = 0, 1 .... ;j = 1, 2, 3; l = 1, 2, 3) 

Modal translation displacement of the kth 
mass of the/th structure in the jth direction, 
corresponding to the rigid body /th transla- 
tion mode 

Modal rotational displacement of the kth mass 
of the ith structure in the jth direction, cor- 
responding to the nth normal mode of the ith 
structure 

Modal rotational displacement of the kth mass 
of the ith structure in the jth direction, cor- 
responding to the rigid body/th rotation mode 
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Modal rotational displacement of the kth 
mass of the ith structure in the jth direction, 
corresponding to the rigid body/th transla- 

tion mode 

Natural frequency of the nth normal mode of 
the ith structure 

INTRODUCTION 

Basically, in modal synthesis the structure is 
treated as an assembly of substructures, each of which 
is analyzed as a separate unit. The equations of mo- 
tion of the complete structure are formulated by synthe- 
sizing the properties of the components, such as mode 
shapes and interface compatibility conditions. During 
the past decade, new methods of variances of the meth- 
ods falling within the general scope of the modal syn- 
thesis technique have been developed by many investi- 
gators. t-s A brief review and comments on these meth- 
ods have been given by Hurry. 9 

Recently the modal synthesis technique has been used 
by growing numbers of industries, such as General 
Dynamics for the coupled analysis of the INTELSAT 
IV-A satellite (built by Hughes for INTELSAT) a•d the 
Atlas-Centaur launch vehicle, McDonnell Douglas for 
the coupled analysis of the MARLSAT satellite (built by 
Hughes for COMSAT General) and the Delta launch ve- 
hicle, and Hughes for the dynamic analysis of MARISAT. 
In addition to the savings in computer time and space, 
this technique has many other advantages. In the anal- 
lysis of a large structure whose substructures are built 
by different contractors, this technique reduces to a 
minimum necessary technical communication across 
component interfaces. It is also desirable for analyzing 
a very large structure whose components are tested 
separately. It can be used to combine the mode shapes 
of the components obtained by tests to analyze the com- 
plete structure. 

This paper presents a modal synthesis technique 
based on the energy approach. The displacement shape 
of the structure is expressed as the superimposition of 
the rigid modes and the finite number of normal modes 
of the main structure and the substructures. Lagrange's 
equations are then used to develop the equation of mo- 
tion in matrix form. The technique discussed in this 
paper proceeds along the same lines as Ref. 6 except 
that translational and rotational springs are added at 
the interfaces of the main structure and the substruc- 

tures, and the technique is generalized for three-di- 
mensional analysis. The advantage of this technique is 
that, instead of using the mode shapes of the substruc- 
tures, it uses the modal forces and moments to deter- 
mine the natural frequencies of the system. This re- 
duces the amount of data required across the component 
interfaces for the analysis.' 

I. BASIC FORMULATION 

In the analysis the system is divided into main struc- 
ture and substructures. The substructures are attached 

to the main structure through joint springs. The sys- 
tem can be free-free or cantileverø In the free-free 

system, the displacement is expressed as the superpo- 
sition of the rigid body modes of the system and free- 

free uncoupleO normal modes of the main structure and 
the cantilever modes of the substructures. In the canti- 

lever system, the displacement is expressed as the 
superposition of the cantilever modes of the main struc- 
ture and the substructures. In this paper, the free- 
free system will be analyzed first since the cantilever 
system is a special case in which rigid body modes are 
absent and the free-free modes of the main structure 

are replaced by cantilever modes. 

For simplicity in the analysis, a lumped mass struc- 
tural model, shown in Fig. 1, is assumed. The results 
of this analysis are also valid for the system in which 
the modal characteristics of the main structure and 

substructures are determined by exact analysis, finite 
element methods, or dynamic test data. For the anal- 
ysis, the origin of the coordinate systems is assumed 
to be the center of gravity of the main structure. 

A. Main structure 

The disptacement of the main structure is expressed 
as follows: 

Y•o(k, t) = •.• 4•(k)qon(t), (1) 
•_Ti • T2• T3•Ri• R2• R3• l 

where j = 1, 2, 3; k = 1,..., no; qor•, qoT•, and q0ra rep- 
resent the translational rigid body motion of the system; 
qoR t, q0•z•, and q0•z a represent the rotational rigid body 

FIG. 1. 

¾2 

MAIN STRUCTURE I I 

I I 

Free-free systems. 

JOINT SPRING 

I I ISUBSTRUCTURE 
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motion of the system; and qm,. ß ß, q0s0 are the general- 
ized coordinates of the main structure. Also, 

½•t =6tJ' Kronecker delta, (2a) 
½ •% = 0 (2b) 

O•%.(k) =/0':(k) } (2c) O•ns.z(k) =- y•*•(k) for small rotational motion, (2d) 
where the j's are in cyclic order; i.e., if j =a, then 
j+l=l and j+2 =2. 

Similarly, the bending slo•, 0•, is expressed as 

O•(k, t) = • ½•,(k) qo, (t) , (3) 
n=T1,Tg•Ta•Ri•Rg, R3•I 

where 

½% -½•: =½• =0 (4a) 
• =6•, Kronecker delta (4b) 

B. Substru•ures 

The displacements of the ith substructure are ex- 
pressed as follows by usi• Eqs. (1) •d (2): 

•0 

- [ y•'•(k) - 

where • = 1, 2, 3; k = 1, 2,..., n•; •d • is the mass point 
of the main structure where the/th substructure is 

codected. Similarly, the bending slope O• of the substruc- 
ture is expressed as follows by using Eq. (3): 

•0 

where 

½•r• = 6•, Kronecker delta, (7a) 

½•%.x(k) = [y•*:(k) - Y•'•(/0] (%) 
--Yl x { J 

• 6 •= •, Kroneeker delta 
II. KINETIC ENERGY 

In terms of the generalized coor•tes, the kinetic 
ener• of the system can be written as follows: 

nl 3 

r = • • • ½•,(m[•(m? + 
I=0 •=1 •=1 

- •? •"(k) d•(•) •"(})}. (8) 
The kinetic energy is expressed in terms of general- 

ized coordinates by substituting Eqs. (1)-(7) into Eq. 
(8). The expression is complex and can be simplified 
by using the following conditions: 

(a) Conservation of linear and angular momentum for 
the normal free-free modes of the main structure: That 
is, preservation of translational and rotational equilib- 
rium, as shown in the following equations: 

n o 

•mo(k)½•(k)=O, n=l,2, ...,70;j=1,2,3, (9) 

• {I oJ•(k)½•(k) - 1•o '•'• •b•'(k) -1•o '•+2 
- 4+2(k) ½•;'(k)]}=0 . (10) + m0(})[y•"(•)½•;•(m 

(b) Orthogo•lity condition of the normal modes. To 
further simplify the remaining terms, the following no- 
tation is introduced: 

m 0 = mass of the main structure, 

: too(k) , 

B• = dist•ce from the center of gravity of the 
system to the center of gravity of the main 
structure in the jth direction, 

n0 

M•: • too(k) y•(k) , 
&:l 

•: mass moment of inertia of the main strue.- 
ture about the center of gravity of the system, 
n 0 

= • [•(•) + m0(k){[ y•"(•)]• + [ y•'•(•)]•}] 
•=1 

n 0 

•,•.z = • [i•,•.Z(k ) + mo(k)y•(k) Y0 J • 

}=1 

m• = mass of the ith structure, 

= • m,(k) , 
•=1 

B• = distance of the center of gravity of the ith 
structure from its attachment point to the 

main structure in the •th direction, 

•,• = • m,(m[ y•(m - y•(•,)], 

+ [y•.a(k ) _ >:(/ YO t J JJ • 

• = modal shear at the attachment point of the 
ith structure in the jth direction due to its 
nth mode, 

M• = modal moment at the attachment point of the 
ith structure in the jth direction due to its 
nth mode 
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ni 

(M,n/co,•)= • [i•t(k)&•.(k)_i?.X•b•X(k) t0t.2 t.2 - t, (k) 

+ m•(k){[y•*X(k) -y•*t(l,)]OR=(k) - [yi•*2(k ) - 

The simplified kinetic energy can now be expressed 
in terms of total masses, mass moments of inertia, 
natural frequencies, modal masses, and modal forces 
(modal shear and moment at the base) of the main struc- 

ture and the substructures; i.e., 

3 

•o• (l•) 

,=• •=vl ..... •a'x { \%. +(M•./%,)½o•(l•)}q•.qo•+•{rn•(q•rfi ß 

+&tRt n=T1 ,R3•1 

III. POTENTIAL ENERGY 

If the orthogonality conditions of the normal mode are 
used, the potential energy can be written as follows: 

2 t•q•., (12) 
n=Ti,**-,R 3 

where K{a, 1, . .., K{•) are the tr•slatio•l and rotation- 
al spring consents of the joint spring in the ith sub- 
struc•re. 

IV. EQUATIONS OF MOTION 

The kinetic energy and potential energy equations 
[Eqs. (11) and (12)] have been evaluated in terms of the 
generalized coordinates. It is now possible to introduce 
Lagrange's equation, 

d aT @U 

In matrix form, the equations of motion appear as fol- 
lows: 

[M] {•} + [K] {q} = {Q}, (14) 
where 

[M] = inertia matrix describing the coupling of 
various masses of the system, 

{q }= column matrix of the generalized coodinates, 
[K ] = stiffness matrix defining the coupling effect 

of various stiffnesses of the system, 

(11) 

{Q } = column matrix of the generalized forces due 
to external forces at the mass point. 

To make a clear presentation, each matrix is decom- 
posed into several elementary matrices, and the stiff- 
ness and inertia matrices are presented as the sums of 
these matrices: 

[M] = [Mol = • ([Mi ] + [M,,]) (15) 
t=1 

and 

•here 

[M 0] = inertia matrix of the main structure, 

[M;] = inerti a matrix of the ith substructure, 

iMp. I= inertia matrix for the joint spring of 
the ith substructure, 

[K0] = stiffness matrix of the main structure, 
[K•] = stiffness matrix of the ith substructure, 

[K•,] = stiffness matrix for the joint spring of 
the ith substructure. 

These square inertia and stiffness matrices are ex- 

panded as shown in the following subsections. Their 
elements correspond to the generalized coordinates at 
their right=hand side. 
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A. Main structure matrices 

The main structure matrices are expanded as follows: 

p ol cd•i 

• OYoøJ•y o 

qol 

qoa 

qo• 

qof o 

(17) 

[•o] {qo} = 

mo o o 0 moB• - moB• 

moB• - mob • 0 

4' -4 2 -z• • 

4 2 

P'ot 

symmetric 

• oy o 

(18) 

B. Substructure matrices 

The substructure matrices are expanded to yield 

(19) 
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3 

+m• •(•) 
•(•) 

•o(•) 

•(•) 

o 

o 

o 

•l,Y+! 

52, Y+1 

•3,$+1 

Y+I 

•i•(•) 

•ly o 

o 

o 

•2, 

o 

o 

o 

$+2 

•(l•) 
•(•) 
•(•) 
•(•) 

o 

o 

o 

•2, Y+2 

Y+2 

•½O•o(/•) 

•(•) 

o 

o 

o 

•o,(•,) 

_ 

•(t•) 

o 

o 

o 

•1, y+l 

•2, Y+I 

•i'(/•) 

Y,'.l 

o 

o 

51, 

•2, Y+l 

•3, Y.,.1 { 

O,fo• t • 

•3J 
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/ 0 \ o \ 

- (Q,,/•,,) 

o \ 
o 

o 

o 

o 

o 

o 

o 

(Ml,/Wll) 

o \ 

o 

o 

o 

o 

o 

o 

o 

(20) 

C. Joint spring matrices 

Expansion of the joint spring matrices is performed as follows: 

KTi 0 0 0 0 0 
0 Kr• ' 0 0 0 0 
0 0 Kr• 0 0 0 
0 0 0 KR• 0 0 

0 0 0 0 KR2 0 
0 0 0 0 0 

qIT 1 

q•r 3 

q• 

q• 
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Define 

M•(I•) - 
Then 

[Mfs]{qf}= 

1 0.12 3 -- ((•f.ff/ f.ff) * ß ß 

J 

then Eqs. (1)-(7), which express the displacements of the structure in terms of generalized coordinates, 
expressed in matrix form as follows: 

•rl(1) 

or 

The modal force {Q} is obtained from the external force vector {F} by the following transformation: 

where 

(22a) 

(22b) 

(23) 

(24) 

can be 

(25) 

(26) 
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F(1) 

(27) 

V. SOLUTIONS OF EQUATIONS OF MOTION 

In matrix form, the differential equations of motion 
appear as 

[M]{/•}+ [g]{q}={q}, (28) 

where the inertia matrix [M] and the stiffness matrix 
[K] are square, symmetric, and of the order fxf. For 
the cantilever system, the stiffness matrix [K] will be 
nonsingular; hence the modal characteristics and re- 
sponse can be easily obtained. For the free-free sys- 
tem, the matrix [K] will be singular. The solution for 
this system requires separating the generalized coordi- 

nates into rigid body coordinates, q0rl , ..., qo•3, and 
elastic coordinates. 

Partitioning Eq. (28) gives 

LM2, M2,_ _J 

where 

(29) 

qo• t 

qo,J,2 

qo• 

qo•z 

qo,% 

go1 

qo1 o 

qtr• 

(30) 

(31) 

For the free-free system, 

[K, 1] = [K•] = [•2,] = 0 . 
If Eq. (29) is rewritten as 

the 

;tt 

partitioned matrix is expanded as 

[Mir ] {•,} + [M12 ] {q•} = {QR}, (33a) 

first equation is multiplied by - [ Mz,] [Mn•' , •d 
two •uations are added, 

the 

the 

If it is assumed that 

(34) 

rewriting Eq. (34) results in 

[M] {•} + [K--] {qs} = {•s}. 

(3 5a) 

(35b) 

(35c) 

(36) 

Now the natural modes, natural frequencies, and re- 
sponse can be obtained by using the standard approach. 
The rigid motion can be obtained by solving Eq. (33) for 
{qs}. The motion of the structure can be obtained by 
using Eq. (25). 

Vl. COMPUTER PROGRAM 

Based on the method discussed earlier, a computer 
program called MODSYN has been developed for both 
free-free and cantilever systems. The following expire- 
pie demonstrates the accuracy of this method. The 
structure is divided into two components as shown in 
Fig. 9.. 

For simplicity it is assumed that 

Y 
(0,4)[ m,(2) 

(0,3}[ .,½n I 

i 
(o,1) .,91• I 

II 
(o,o) 

FIG. 2. 

ATTACHMENT POINT 

(• SUeSTRUCTURE 
{0.2}{ ,•0{2) { (0.4}1 ml{2) 

(0.,){ '"0(') [ (0:')[ '",(') 

(o,o) (o,•! 

ß -•'- X 

Components of the structure. 
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TABLE I. Natural frequencies of the complete struc- 
ture and the main structure obtained from the NASTRAN 
program. 

Mode 

number Structure 

1338 

TABLE II. Natural frequencies of the complete structure ob- 
tained from the MODSYN program. 

79.45 

341.77 

683.12 

919.86 

1627.96 

2238.60 
2868.70 

3323.54 

4 Modes 2 Modes 1 Mode 

Frequency (Hz) Made Frequency Frequency Percentage Frequency Percentage 
number (Hz) (Hz) error (Hz) error 

Main structure I 79.45 79.46 0.0125 80.8 1.69 
and substructure 2 341.77 343.60 0. 5900 389.5 13.96 

3 683.13 684.53 0.2000 

217.18 4 919.85 937.80 1.9500 

701.56 • 1627.90 
6 2238.60 

1715.53 7 2868.17 
2945.52 s 3323.50 

m0(1) =m0(2) =ml(1) =m1(2) = ! slug (14.6 kg) , 

I•'(1) =I•'(2) =I•'(1) =I•'(2) = 1 slug ft • (1. 356 kg m a) . 
The structure consists of concentrated masses which 

are connected by beams. The areas of the cross sec- 
tions and bending stiffnesses (El) of the beams are as- 
sumed to be the same and equal to 1 it a (0.09 m 2) and 
10 • lb ft 2 (4.12 N m=), respectively. The main struc- 
ture and substructure are assumed to be the same. The 

cantilever modal characteristics of the complete struc- 
ture and the main structure (or substructure) are ob- 
tained by using NASTRAN (see Table I). The natural 
frequencies of the complete structure have been ob- 
tained with the MODSYN program by using the four 
modes (total), the first two modes, and the fundamental 
mode for the main structure and for the substructure 

(see Table II). The percentage errors are obtained by 
comparing the exact natural frequencies of the struc- 
ture from NASTRAN and the natural frequencies from 
MODSYN. For the case in which all four modes of the 

substructure are considered, the results are exact, as 
expected. 

VII. CONCLUSIONS 

The mode synthesis technique presented in this paper 
reduces significantly the technical communication 
across component interfaces of a complex structure for 
determination of natural frequencies. The accuracy of 
the results obtained with this method is good. This 
technique is especially preferred for in-orbit flexible 
dynamic analysis of a spacecraft. 
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