Mode synthesis technique for dynamic analysis of
structures*

LIST OF SYMBOLS

B{ Distance of the center of gravity of the ith
structure from its attachment point to the
main structure in the jth direction

B} Distance from the center of gravity of the
system to the center of gravity of the main "
structure in the jth direction for the unde-
formed configuration

f Total number of generalized coordinates used
to describe the motion of the system

fi Number of elastic modes used to describe the
motion of the ith structure (=0,1,...)

Fi(p) External force at the kth mass of the ith
structure (both main and substructure) in
the jth direction

gt Product moment of inertia of the ith substruc-
ture about its attachment point

I Product moment of inertia of the main struc-
ture about the center of gravity of the system

JH Moment of inertia of the ith substructure
about its attachment point

J Mass moment of inertia of the main structure
about the center of gravity of the system
(j=1,2,3)

4| Stiffness matrix defining the coupling effect of
various masses of the system

1 Mass point of the main structure where the
ith substructure is attached

my Mass of the ith structure

g Mass of the main structure

[M] Inertia matrix

Mi, Modal moment at the attachment point of the
ith structure in the jth direction due to iis
nth mode

Mi(R) External moment of the kth mass of the ith
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A mode synthesis technique is presented for determining the normal modes, natural frequencies, and
responses of three-dimensional complex structure with flexible joints. Lagrange’s equations are used to
develop the equations of motion of the structures. Based on this technique a computer program called
MODSYN has been developed for both free-free and cantilever systems. An example demonstrates the

accuracy of this method.
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structure in the jth direction

Number of mass points in the ith structure

Column matrix of generalized coordinates

Generalized coordinates describing participa-
tion of the nth uncoupled mode of the ith
beam in free vibration of the system (i =0,
1,...5n=1,2,..., f)

Generalized coordinates describing a relative
rotation motion in the jth direction of the
joint spring of the branch
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Generalized coordinates describing a relative
translation motion in the jth direction of the
joint spring of the ith branch

Generalized coordinate describing rigid body
rotation in the jth direction

Generalized coordinate describing rigid bodyr
translation in the jth direction

Generalized force

Modal shear at the attachment point of the Zth
structure in the jth direction due to its nth

mode
Kinetic energy

Potential energy

Coordinate of the center of gravity of the kth
mass of the ith structure in the jth direction
measured in relationship to the center of
gravity of the system (i =0 for the main
structure; i=1,... for the substructure;

j =1,2,3) in the undeformed configuration

Translational displacement of the kth mass of
the ith structure in the jth direction

Rotational displacement of the 2th mass of the
ith structure in the jth direction

Modal mass in the nth normal mode of the ith
structure

Modal translational displacement of the kth
mass of the ith structure in the jth direction,
corresponding to the nth normal mode of the
ith structure

Modal translation displacement of the kth
mass of the ith structure in the jth direction,
corresponding to the rigid body Jth rotation
mode (i=0,1,...;7=1,2,3;1=1,2,3)

Modal translation displacement of the kth
mass of the ith structure in the jth direction,
corresponding to the rigid body Ith transla-
tion mode

Modal rotational displacement of the Ath mass
of the ith structure in the jth direction, cor-
responding to the nth normal mode of the ith
structure

Modal rotational displacement of the kth mass
of the ith structure in the jth direction, cor-
responding to the rigid body /th rotation mode
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¥ir,(®)  Modal rotational displacement of the kth
mass of the ith structure in the jth direction,
corresponding to the rigid body Ith transla-
INTRODUCTION

Basically, in modal synthesis the structure is
treated as an assembly of substructures, each of which
is analyzed as a separate unit. The equations of mo-
tion of the complete structure are formulated by synthe-
sizing the properties of the components, such as mode
shapes and interface compatibility conditions. During
the past decade, new methods of variances of the meth-
ods falling within the general scope of the modal syn-
thesis technique have been developed by many investi-
gators.!™® A brief review and comments on these meth-
ods have been given by Hurty.®?

Recently the modal synthesis technique has been used
by growing numbers of industries, such as General
Dynamics for the coupled analysis of the INTELSAT
IV-A satellite (built by Hughes for INTELSAT) and the
Atlas-Centaur launch vehicle, McDonnell Douglas for
the coupled analysis of the MARISAT satellite (built by
Hughes for COMSAT General) and the Delta launch ve-
hicle, and Hughes for the dynamic analysis of MARISAT.
In addition to the savings in computer time and space,
this technique has many other advantages. In the anal-
lysis of a large structure whose substructures are built
by different contractors, this technique reduces to a
minimum necessary technical communication across
component interfaces. It is also desirable for analyzing
a very large structure whose components are tested
separately. It can be used to combine the mode shapes
of the components obtained by tests to analyze the com-
plete structure.

This paper presenis a modal synthesis technique
based on the energy approach. The displacement shape
of the structure is expressed as the superimposition of
the rigid modes and the finite number of normal modes
of the main structure and the substructures. Lagrange’s
equations are then used to develop the equation of mo-
tion in matrix form. The technique discussed in this
paper proceeds along the same lines as Ref. 6 except
that translational and rotational springs are added at
the interfaces of the main structure and the substruc-
tures, and the technique is generalized for three-di-
mensional analysis. The advantage of this technique is
that, instead of using the mode shapes of the substruc-
tures, it uses the modal forces and moments to deter-
mine the natural frequencies of the system. This re-
duces the amount of data required across the component
interfaces for the analysis.

1. BASIC FORMULATION

In the analysis the system is divided into main struc-
ture and substructures. The substructures are attached
to the main structure through joint springs. The sys-
tem can be free—free or cantilever. In the free-free
system, the displacement is expressed as the superpo-
sition of the rigid body modes of the system and free-
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tion mode
Wia Natural frequency of the »th normal mode of
the ith structure

free uncoupled normal modes of the main structure and
the cantilever modes of the substructures. In the canti-
lever system, the displacement is expressed as the
superposition of the cantilever modes of the main struc-
ture and the substructures. In this paper, the free—
free system will be analyzed first since the cantilever
system is a special case in which rigid body modes are
absent and the free-free modes of the main structure
are replaced by cantilever modes.

For simplicity in the analysis, a lumped mass struc-
tural model, shown in Fig. 1, is assumed. The results
of this analysis are also valid for the system in which
the modal characteristics of the main structure and
substructures are determined by exact analysis, finite
element methods, or dynamic test data. For the anal-
ysis, the origin of the coordinate systems is assumed
to be the center of gravity of the main structure.

A. Main structure

The displacement of the main structure is expressed
as follows:

!

Yilk, 1) = 34 (R)gon(), )
n=T1y T2y Tge Ryr Ryr Rgy1

where j= 1,2,3;k=1,..., ng dorys Gotas and dory YEP-
resent the translational rigid body motion of the system;
qoryr Jory and dor, represent the rotational rigid body
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FIG. 1. Free—free systems.
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motion of the system; and qqy, ..., qog, are the general-

ized coordinates of the main structure Also,

qu.! =68;,, Kronecker delta, (2a)

dp, =0 (2b)

Obe,, (B =975 (k) (2)
o for small rotational motion,

(z)ORj z(k)—_y (k) (Zd)

where the j’s are in cyclic order; i.e., if j=3, then
j+l=1landj+2=2,

Similarly, the bending slope, 6{,, is expressed as

fo
83(k, 1) = Vhalk) gon (8, (3)
H=T1,T21T31R1|R21R311
where
Vhe, =¥br, =dbry =0 (42)
wfm. =8;;, Kronecker delta (4b)
B. Substructures
The displacements of the ith substructure are ex-
pressed as follows by using Eqs. (1) and (2):
fo
Yitk, 1= 3. {oda(l)+[yiR) - 582 @) Wb,
n:Tl,.-..R3.1
—{ iR = 93 @) WEE)Yg04(8)
£
+ E ¢{n(k)qin(t) ’ (5)

"=T1.....R3.1

where j=1,2,3;k=1,2,...,n; and [, is the mass point
of the main structure where the ith substructure is
connected. Similarly, the bending slope 6} of the substruc-
ture is expressed as follows by using Eq. (3):

fo

64(k, 1) = $9(1)90a(0)

n=T1.---.R3,l

1
TR D K () P (5 (6)
n=Tl.-.-.R3.1
where

¢ir,=6s» Kronecker delta, (7a)
¢fﬂj=0 (7o)
dir,, (1) =[y1"(k) = 33°%(1,)] (7c)
lr,,,(B) == [{"(R) - 37"(2)] (7d)
ZrbiTl iz, =¥ir,=0 (7€)
zpmk-(i,,,, Kronecker delta (71)

ll. KINETIC ENERGY

In terms of the generalized coordinates, the kinetic
energy of the system can be written as follows:
ng 3 . .
7= 2. 0 mY iR+ 31 7[6](R)F

1=0 k=1 Jj=1

~ 1) 69 61 )} ®)

The kinetic energy is expressed in terms of general-
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ized coordinates by substituting Eqs. (1)-(7) into Eq.
(8). The expression is complex and can be simplified
by using the following conditions:

(a) Consevvation of linear and angular momentum fov
the normal free-free modes of the main structure: That
is, preservation of translational and rotational equilib-
rium, as shown in the following equations:

"o

D mo(R)O(R) =0, n=1,2, ..., f3i=1,2,3, (9
hal

ZQ, {18 (Rl (R) = 101 9 () = I 7*2 92 ()

k=1

+ mo(R) 33 (R)OLE(R) - ¥37(R) od ()] }=0 . (10)

(b) Orthogonality condition of the normal modes. To

further simplify the remaining terms, the following no-
tation is introduced:

=mass of the main structure,

My
f
= i mo(k) ’

B} =distance from the center of gravity of the
system to the center of gravity of the main
structure in the jth direction,

no
MOB{): Z mo(k) yj(k) ’
h=1

J4 = mass moment of inertia of the main struc-
ture about the center of gravity of the system,

"o

=S [
=l
9

J-(f].hl - Z [16.14-1(]2) + mo(k)y’o(k) y{,"(k)] ,
k=1
m;=mass of the i{th structure,

n
-3 e,
[

B} =distance of the center of gravity of the ith
structure from its attachment point to the
main structure in the jth direction,

mB = Z my(k

k=l

gy = Z:[I”(k)+m,(k){[y"’1(k) v
[ +Z(k) yhz(lg Z}]’

Jirdt =Z {1 (R) + my(R)yi(R)

h=1

)+ moRM[ v (R) B+ [ v 3(R)P}]

Wyite) = ya()],

- y{(l,)] s

x[yi* (k) = i @)1},

@}, =modal shear at the attachment point of the
ith structure in the jth direction due to its
nth mode,

ni
)= my(R)in(k)

k=l
M{,l =modal moment at the attachment point of the
ith structure in the jth direction due to its
nth maode

- (Q'l’n/w?n
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ny
Min/ ) = 3 [ (R (k) = 137+ it (R) = [0 12 12 (k)

k=1

+my (BRI (B) —v8 (1) Jod22(k) = [y2(R) - yi*2(1) 03 ()]
) |
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The simplified kinetic energy can now be expressed
in terms of total masses, mass moments of inertia,
natural frequencies, modal masses, and modal forces
(modal shear and moment at the base) of the main struc-

ture and the substructures; i.e., ,

3 .
T= Z %[mozlfn'j +2mDB{J+2.qOTj&ORh1 - 2”103{)’1&01',!'103,,2 +Jéj(q.cmj)2 - 2&’(’!'“14.01;, "IDR,,I]

=1
fo fo

> oz

fo 3
LY hedl +
+5 ondon
203 isl §=1 n=Ty,e0esRyy1 P=Tyseee, Ryl

= 2m, B 9821 ) (1)) + I3 0l (103, (1) = 209 9 (10

Fi fo

{”lt¢{h(li)¢ép(ll)+2mlB€‘z¢(j)n(li) w%;‘(l;)

I} o

J ) . L. . . L
+Z Z 1{‘(%) ¢ojp(li)+(M:{n/w?n)w{»(li)}q“qop+%{m,(qnj)2+2m,-B{ aq‘qu‘Riu - 2m,B} lqurj dir,,,
n

n=l p=T yeeey Ry

o
+ij(511&,)2—2=7{'1'1 Elmjzlmm}*'f.lw,{ >

n=T 14100y Ryl

fo
+51mj{ Z

n=T1---nR31 1

lIl. POTENTIAL ENERGY

If the orthogonality conditions of the normal mode are
used, the potential energy can be written as follows:

1
U= ; E; %Mm‘-‘-’%nfﬁn’r ;
= n= =

1 n=Tyreees Ry

%Kin q%n ] (12)

where Kz, «.., Km3 are the translational and rotation-
al spring constants of the joint spring in the ith sub-
structure.

IV. EQUATIONS OF MOTION

The kinetic energy and potential energy equations
[Egqs. (11) and (12)] have been evaluated in terms of the
generalized coordinates. It is now possible to introduce
Lagrange’s equation,

d oT aU
3t 55, Toq, ¢ (13)

In matrix form, the equations of motion appear as fol-
lows:

(M1} + [K)a}= {6} (14)

where

[M] = inertia matrix describing the coupling of
various masses of the system,

{4 }=column matrix of the generalized coodinates,

[K ] =stiffness matrix defining the coupling effect
of various stiffnesses of the system,
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fi

(72,9 (2) + m, BIRWEA 1)) — mi B 932(1)] Gen(t) Y — (Qi—) Z1a(t) }

n=1 Win

fi

1
(T193,1,) + m BI 0 2(1,) = my BI? 4M1,) = T3 pis 1) = JEB 81 G0 + 2 (M‘ﬂ) ‘.Iin(t)}]

2
A= Win

fi

Kin ;ﬁn * (11)

DO

=

i=1 n=

{@ } =column matrix of the generalized forces due
to external forces at the mass point.

To make a clear presentation, each matrix is decom-
posed into several elementary matrices, and the stiff-
ness and inertia matrices are presented as the sums of
these matrices:

L] = a5} =§ ((m,]+ (M) (15)
and
[K]=[Ku]+; (AR (16)
vhere

[My]=inertia matrix of the main structure,
[M,)=inertia matrix of the ith substructure,

[M,,)=inertia matrix for the joint spring of
the ith substructure,

[K,]=stiffness matrix of the main structure,
[K,]=stiffness matrix of the ith substructure,

[K,]=stiffness matrix for the joint spring of
the jth substructure.

These square inertia and stiffness matrices are ex-
panded as shown in the following subsections. Their
elements correspond to the generalized coordinates at
their right-hand side.
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A. Main structure matrices

The main structure matrices are expanded as follows:

[Kol{go}=

[Mu] {qo}z

2
Fu 01 %@ot

My

T2
0 0
my 0
mg

B. Substructure matrices

2
H 0aWoy

3
- mpBy
2
moBy
Jyt

symmetric

da
9o
9o

2
Kog %o, qoy,

3
moBa

1
= mpByg
_Jéz

22
Jo

The substructure matrices are expanded to yield

[Kl]{q{}=

lMi]{45}=

2
M@

2
KWy

Hia

“'if‘
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Qisy

2
- moBy

1
meByg
_J%)S

- J%C*

33
Jo

I
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iz

Hogy j

Qor,
Qor,
dorg
qor,
Qor,
qor,

dn

qor,
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+ +m;

- miBf'l

— J{,hl

Ohe, (1)
Oir, (1)
diry (1)
CEAOA)

Dhsolls)
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0
0

61,14—2
62, J+2

63 1+2
J+2(l )

J#Z(l )/
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(L)

%fo(lt)
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b1y 0 5y,
B2y 0 By,
b4y 0 By,
Dbr, (1)) 0y, 41 ¢$R1(ll)
i, (L) : 85 4. I (1
> Por,li e 2,441 ¢l.:!R2( 1)
Pl (L) B3, 141 Pomy (1)
$0 (1) ahy) o4 (1)
Phrolle) YA iy (1)
by, ! gy \7
Bay B2y
Bay by, 0
¢"L’)R1(l{) (bzml(l;) 61-!*2
¢$R2(l{) ¢‘6Rz(li) > 62.J+2
, . - .!41
gty [ BT de (1) éjs.:.z
P5:(1:) (1) oy A(ly)
Poro(ls) Ddsols) %,«,,(z,)
0 T 0 0o \r ]
0 0 0
0 0 0
61.1*1 51,j+1 6“
[ 6
2, J41 _ it 2, i+l 8y
B3, 141 ' 03, 141 by
¥hi' (@) ¥hi' () Pil,)
Yigo(L) ’.,}‘D(l ) Uheo(10)
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[ T
0 by, by,
0 Do, Oir,
0 b T
+ +
O (p(j]fo ¢)ng
- (Q{l/wfl) 0 0
- (Qly,/wy) 0 0
0 T 0
0 0
0 0 0
0 615 byy
0 b2 Y
0 0y, Og;
. 0 ) N 4 e
0 wéfo(l') ¢61f0(li)
(M{I/wfl) 0 0
(M{,‘/wf,‘) 0 0

C. Joint spring matrices

- (Q{l/w?l)

- (Q{,i/w?f’)

(Mi;,/ i)

S O ©O O O o o

0

(M{l/wfl)

Expansion of the joint spring matrices is performed as follows:

(K, 0 0 0 0 0]
0 K, 0 0 0 0
o 0o K, 0 0 0
(K Hai}= 0 0 0 Ky 0 O
0 0 0 0 K O
L 0 0 (1] 0 0 Kpg,
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Define
LI = my b)) + my B2 it (1) — mBI™ 4:2(1,) (22a)
ML) = T8 (1) + m B G42(L) = m,BY? o) = T gt ) = I R ) - (22b)
Then
»L;'l T Mg'l dor,
Ly, M3, dor,
L'il'l cee L}o nty v ~mB}  ~@i/@f) - - - —(Q:fi/wlzf') dir,
[Mls]{q!}=
Mi‘Tl ce . MY, ~—-mB} . .. JB w3 /) - - - (M‘},l/w%,l) Qirs
_(Q}I/uﬁl) M (M::l/w%l) a1
L ~@ig/ly) - (M:!’f,/ “’%f,) i disy
(23)
It
Finle) =93 (2) + {yi3(0) - y3 2 0 ) = {91 () - 33" (T} 9da*(2) (24)

then Eqs. (1)-(7), which express the displacements of the structure in terms of generalized coordinates, can be
expressed in matrix form as follows:

(D) 4’(1)1'1(1) o 4’(1)1‘0(1) T ! Jor, \
CHEN) Zptsirl(”o) st ‘pgfo (o) 9oy,
= (25)
Yi(1) Pir (1) < - $:f0(1) ¢ - ¢:1-1(1) c o 4’1;,(1) Tir,
63(ny) I W0 - - - A bir o) * - - zl’u,("i) I qix, .

{r}=loHq} .

The modal force {@} is obtained from the external force vector {F} by the following transformation:

{Q}=lo)" {F}, (26)

where

J. Acaust. Soc. Am., Vol. 89, No. 6, June 1976
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Fi(1)

Mi(ng)
@2n

Fi(1)

Ad?(n‘)

V. SOLUTIONS OF EQUATIONS OF MOTION

In matrix form, the differential equations of mation
appear as

(Mg} + [k Ha}={Q}, (28)

where the inertia matrix [M] and the stiffness matrix
K] are square, symmetric, and of the order fxXf. For
the cantilever system, the stiffness matrix [X] will be
nonsingular; hence the modal characteristics and re-
sponse can be easily obtained. For the free—free sys-
tem, the matrix [K] will be singular. The solution for
this system requires separating the generalized coordi-
nates into rigid body coordinates, Qorys -+ +» Jorys and
elastic coordinates.

Partitioning Eq. (28) gives

M M v
. 12 dr Ky K ar Qr
6x6 . * = ,
dr Ky Ky dE Qs
Mz My,
(29)
where
dm
9or, )
q
dor, %0
Qor,
{ar}= {az}= . (30)
dor,
dit,
qORz
\ qORa
415,
For the free—free system,
(&, ) =[x, = [Kp]=0 . (31)

If Eq. (29) is rewritten as
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M, {ZIIR}+ 0 o0 {GR}={Q1¢} , (32)
My | UGg 0 Ky | 4z Qr

the partitioned matrix is expanded as

Mll
le

My Ha e} + MG 2} = 1Rk} (33a)

[le]{zin}+ [Maz] {Ziz} * [Kaa] {‘IE} = {QE} ’ (33b)

the first equation is multiplied by — [ My, 1{M,, I, and
the two equations are added,

([Map) = (M} [y, 17 [MyaD i 2} + (K2 g}

={Q@s} - [Mz) [y, 17 {Qi} - (34)
If it is assumed that
(3] = (M) - (M ) [y, 1 [M1,] (332)
(R) =Ky , (33b)
{@ct={@e} - (M2 ) (M, ] {Qx} (35¢)
rewriting Eq. (34) results in
[ {5} + [ B Haet=1{Qs} - (36)

Now the natural modes, natural frequencies, and re-
sponse can be obtained by using the standard approach.
The rigid motion can be obtained by solving Eq. (33) for
{gg}- The motion of the structure can be abtained by
using Eq. (25).

Vvi. COMPUTER PROGRAM

Based on the method discussed earlier, a computer
program called MODSYN has been developed for both
free—free and cantilever systems. The following exam-
ple demonstrates the accuracy of this method. The
structure is divided into two components as shown in
Fig. 2.

For simplicity it is assumed that

€0 ATTACHMENT POINT

SUBSTRUCTURE
my(2)

— X

0.0)

FIG. 2. Components of the structure.
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TABLE 1. Natural frequencies of the complete struc-
ture and the main structure obtained from the NASTRAN
program.,

Frequency (Hz)

Mode Main structure
number Structure and substructure
1 79.45 217.18
2 341.77 701.56
3 683.12 1715.53
4 919,86 2945.52
5 1627.96
) 2238,60
7 2868.70
8 3323.54

mo(1) = my(2) =m,; (1) =m,(2y =1 slug (14.6 kg) ,

TE5(1) =I55(2) =It%(1) =I1%(2) = 1 slug ft? (1. 356 kg m?) .

The structure consists of concentrated masses which
are connected by beams. The areas of the cross sec-
tions and bending stiffnesses (EI) of the beams are as-
sumed to be the same and equal to 1 ft? (0. 09 m?) and
107 1b ft? (4.12 N m?), respectively. The main struc-
ture and substructure are assumed to be the same. The
cantilever modal characteristics of the complete struc-
ture and the main structure (or substructure) are ob-
tained by using NASTRAN (see Table I). The natural
frequencies of the complete structure have been ob-
tained with the MODSYN program by using the four
modes (total), the first two modes, and the fundamental
mode for the main structure and for the substructure
(see Table M). The percentage errors are obtained by
comparing the exact natural frequencies of the struc-
ture from NASTRAN and the natural frequencies from
MODSYN. For the case in which all four modes of the
substructure are considered, the results are exact, as
expected.

VIl. CONCLUSIONS

The mode synthesis technique presented in this paper
reduces significantly the technical communication
across component interfaces of a complex structure for
determination of natural frequencies. The accuracy of
the results obtained with this method is good. This
technique is especially preferred for in-orbit flexible
dynamic analysis of a spacecraft.
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TABLE HO. Natural frequencies of the complete structure ob-
tained from the MODSYN program.

4 Modes 2 Modes 1 Mode
Mode Frequency Frequency Percentage Frequency Percentage
number (Hz) (Hz) error (Hz} error
1 79.45 79.46 0.0125 80.8 1.69
2 341.77 343,80 0.5900 389.5 13.96
3 683.13 684,53 0.2000
4 919.85 937.80 1.9500
5 1627,90
6 2238.60
7 2868.17
8 3323.50
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