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Resonances in Nonstationary, Nonlinear,
Multidegree-of-Freedom Systems

BRIJ N. AGRAWAL*
COMSA T Laboratories, Clarksburg, Md.

AND
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Syracuse University, Syracuse, N.Y.

The asymptotic method for determining resonant responses of nonstationary, nonlinear systems is presented.
Resonance conditions, resonance coefficients, and higher-order resonances are discussed. The first asymptotic
approximation nonstationary solution is obtained for general resonances. A gyroscopic system is analyzed for
combination differential resonances v = o;2 —2co1 and v = o>2 — o}r Using the general solution, nonstationary and
stationary responses and stability conditions are obtained. The numerical results indicate that the change in the
rate of variation of the frequency of excitation may shift the nonstationary response from one stable mode to
another stable mode.

Nomenclature
Aj" = nonoscillatory function
aj = amplitude of the jth mode
BJ" = nonoscillatory function
b = linear stiffness of bearing C in the a and ft directions (Fig. 1)
b2 = quadratic nonlinear coefficient of bearing C in the ft direction
b3 = cubic nonlinear coefficient of bearing C in the /? direction
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coefficient of cos if/j in ft
coefficient of sin ij/j in fl
perturbation force in the jth mode
moment of inertia of the rotor with respect to the transverse

axis passing through the rotor's e.g.
moment of inertia of the rotor with respect to the axis of

symmetry
moment of inertia of the rotor with respect to an axis passing

through the lower bearing perpendicular to the symmetry
axis, /! = / + ML2

2

upper limit of time interval
distance from bearing O to bearing C (Fig. 1)
distance from bearing 0 to the rotor's e.g.
mass of the rotor
order of the asymptotic approximation
number of degrees of freedom
weight of the rotor
periodic function of angles 9 and \l/lt..., i//M
normalized coordinate
first asymptotic approximation of Xjt XJO = aj cos \l/j
first asymptotic approximation of Xjt Xjo = — aj a>j sin \l/j
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a, p = angles defining the position of the axis of the gyroscope
in the fixed coordinate axis OXYZ (Fig. 1)

e = small positive parameter
9 = phase angle of the external periodic excitation; angle of

rotation of the rotor in Fig. 1
v = instantaneous frequency of the external excitation;

v = 0
T = slow time, t = st, which varies from 0 to L
T* = specific time in the range of T, i*e [0, L]
i//j = phase angle of the jth mode
() = angle between the axis of symmetry of the rotor system

and the rotation axis
OK = natural frequency of the jth mode of the linear system

= d/dt, or differentiation with respect to time, t

Superscripts
l ,2 , . . . ,m = order of the asymptotic approximation for A., Bjf fjt

Njt Uj, kr; power for the remaining symbols except #'s

Subscripts
c = coefficient of the cosine function
j = jth mode
kr = coefficient of i//r in the harmonic function associated with

the term
/c0 = coefficient of 0 in the harmonic function associated with

the term
s = coefficient of the sine function

Introduction

N ONSTATIONARY mechanical systems are those systems
whose parameters, such as mass, stiffness, natural frequency,

and external perturbation frequency, are time dependent. These
systems are frequently encountered in practical applications such
as transition resonance of turboengines, vibration testing of
space vehicles, and variable mass of a rocket during launch.

Lewis1 was the first to present a solution for the response
of a nonstationary, linear, single-degree-of-freedom mechanical
system subjected to an excitation whose frequency is a linear
function of time. An outstanding contribution in this field of
mechanics was also made by the Russian school. In particular,
Mitropolskii extended the asymptotic method to nonstationary
problems, although he did not mention combination resonances
in his monograph.2 Combination resonances and related con-
cepts, such as resonance coefficients and resonance conditions
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in stationary nonlinear systems, are discussed by Mettler,3 who
applied the averaging method, and by Leiss,4 who used the
asymptotic method. An exhaustive bibliography on the subject
of nonstationary systems can be found in a survey paper by
Evan-Iwanowski.5 Nayfeh and Saric6 have analyzed spinning
bodies for combination resonances by using the method of
multiple scales.

In this paper, the asymptotic method is presented to determine
the resonant response of nonstationary, nonlinear, multidegree-
of-freedom systems for general resonances such as combination
resonances. The first asymptotic approximation solution is
obtained for the general resonance. The concept of virtual work
is applied to define resonance, resonance coefficients, and higher-
order resonances. A gyroscopic system exhibiting combination
differential resonances v = co2 —2cOj and v = a}2 — a)1is analyzed.
The general solution is used to obtain the nonstationary response,
stationary response, and stability conditions for these resonances.
Nonstationary responses are obtained for the various functions
of the frequency of excitation. The details of the work presented
in this paper are given in Ref. 7.

Asymptotic Method
The equations of motion of an n-degree-of-freedom, asymptotic,

holonomic mechanical system can be normalized and written
in the following form :
•XJ+&2(i)XJ = tffr,0,Xl....,XH,X1,...,Xl)

;=l , . . . ,n (1)
In Eq. (1), the terms which are functions of T are varying
slowly with time. The method presented in this paper requires
that the system parameters vary slowly compared to a natural
time unit, which is a time unit of the order of the vibration
period. The time i varies from 0 to L. Setting e = 0 in Eq. (1)
and assuming that T is a parameter results in an equation,
called an unperturbed equation, which can be solved as follows :

Xj = Oycos \l/jf a-j = 0, \[fj = (Dj j = 1, . . . , n (2)
When £7*0, i.e., in the presence of perturbation, higher

harmonics may appear in the solutions and the natural frequency
may depend on the amplitude. Furthermore, various resonances
may take place, and the variation of cofo) and V(T) with slow
time, T, will result in additional phenomena which are not
observed in nonlinear stationary systems. Taking into account
these physical arguments and keeping in mind that when
e -> 0 the solution should be represented by Eq. (2), we use the
following form to solve Eq. (1) for the mth approximation :

U/(T, ̂ , . . . , M,^,..., 1/0 0)

where Uf are unknown functions, periodic in 9 and \l/1,...,\l/n
and dependent on av...,an. The functions a-3 and \j/j are
determined from the following equations :

*J = Z (4a)

(4b)

where AJ and Bj are nonoscillatory functions.
U?, Aj, and B,1" are selected so that, after aj and if/j are

replaced with the functions defined in Eq. (4), Eq. (3) will satisfy
Eq. (1) up to £m. The coefficients A? and Bj are also unknowns
in the determination of X.. Obviously, Eq. (1) is insufficient to
determine the unique values of these coefficients. To obtain
unique values, an additional condition is necessary ; i.e., Uj must
be finite.

The asymptotic method presented here is similar to the
asymptotic method developed by Mitropolskii for nonstationary
systems. The essential difference lies in the form in which the
solution is sought. In the present method, this form is the same

for all resonances; in Mitropolskii's method, it changes for
different resonances. The former approach, as will be clear later,
is a unified approach for all resonances, and makes it possible
to obtain resonance coefficients and conditions. Expanding f . in
the right-hand side of Eq. (1) into Taylor's series results in
efj(r,0,X1,...,Xn,X1,...,Xn) =

where
. , Xn0)

Xi0 = — at

(5)

(6)
co- sn \

After determining the first and second derivatives of Xj with
respect to time t by using Eqs. (3) and (4) and substituting
Xj and Xj in the left-hand side of Eq. (1), we equate the
coefficients of the same power of e, up to an including mth-
order terms, in the left and right sides of Eq. (1) to obtain

cos i
fj(T,9,Xlo,...,Xn0,X10,...,Xn0) (7a)

-Nj* (7b)
where the differential operators D and Njm are defined as
follows:

n
D = v(x)(d/dO}+ J] o}j(d/d\l/^ (8a)

1=1
M m = A7 m(A ^ Am~ ^ B ^ B m~ ^ U ^ U m~ ^} (8b)

The steps leading to the mth-order approximation are as
follows. Calculate Uj1, A-1, and B^ by solving Eq. (7a) and
constraining U^ to exclude secular terms. In a similar manner,
for the mth approximations, the values of U•, A-, and Bj
(i= l , 2 , . . . ,m—1) obtained from the previous steps are sub-
stituted into //"-N/1 in Eq. (7b). Uj", Aj", and Bj" are then
calculated by solving Eq. (7b) and constraining Uj" to exclude
secular terms. Substituting Uj", Aj", and Bj" into Eqs. (3) and
(4) yields the mth asymptotic solution.

Resonances
Resonance is characterized by a large system response

amplitude caused by a small perturbation force. This pheno-
menon can be explained in terms of virtual work; that is, it
takes place when the virtual work done by the perturbing
forces over a cycle of a particular mode is not equal to zero
over a large time interval.

Consider the virtual work of the perturbing force efj along
the virtual displacement corresponding to the mode of the first
harmonic of Xj; i.e.,

(9)

virtual work = ,

= z
m = l

Expanding fj" into Fourier series results in

r sjkO ...kn (10)

will be referred to as FcjkHenceforth, Fcjko kn and Fsjko kn
and Fsjk, respectively. Substituting fjm from Eq. (10) into Eq. (9)
and averaging the virtual work over a large time interval, T,
indicates that only nonperiodic terms will be nonzero. Hence,
only those terms whose frequencies are equal to a)jt i.e., whose
indices k satisfy the following relationship :
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r = l

for some time T*£[0, L], will contribute to virtual work.
The Fourier coefficients Fsjk and Fcjk, which correspond to

the previous resonance relationship, are called resonance co-
efficients. Hence, in order to have resonance, two conditions
should be satisfied. First, the resonance relationship of Eq. (11)
must be satisfied, and second, at least one of the corresponding
resonance coefficients should be nonzero.

Clearly the resonance conditions may be satisfied by asymp-
totic approximations of various orders of £. That is,

= ±0);

or V*° (12a)

Fejk
l*0 or FsJk

l*Q (12b)
where the superscripts indicate the order of £ of the asymptotic
approximation.

Some of the resonances may be satisfied in more than one
order of e. Hence, the /th-order resonance may be defined as
follows. Let us denote the elements of the sets of indices satisfying
the /th-order resonance relationship as {kr

1}. If {kr
1} is not

contained in any {kr
1} where i < I, and if either the Fcjk

l or
Fsjk

l or both are nonzero, then the conditions are satisfied for
the existence of the /th-order resonance. This resonance rela-
tionship may be expressed as

Table 1 Resonance types

Z (13)

The resonance relationship expressed by Eq. (11) may be
rewritten as

(14)

where
hr=-kr±drj

The resonance expressed by Eq. (14) may be considered to be
a general resonance. Other types of resonance, which are special
cases of Eq. (14), are listed in Table 1.

First Asymptotic Approximation Solution
By expanding f.1 into a Fourier series and substituting the

resulting values into Eq. (7a), we obtain
+ o;/t// = smilsj[aj(dcoj/d'c)+2Aj

1coj+ajDBj
1']-

cos {l/j(DAjl - la-, B^COJ) +

(15)

For Uj1 to be finite, the right-hand side of Eq. (15) must
not contain harmonics of frequency a>j. Thus the terms con-
taining harmonics of a>j or secular terms should be set equal
to zero. It should be noted that, in fl, the harmonic terms
whose frequency is COj for t*e[0, L] contribute virtual work in
Eq. (9); hence, these terms cause resonance. These same terms
are secular terms in Eq. (15). A resonant case is discussed in
the following paragraphs.

A system is resonant if both resonance conditions are satisfied.
This indicates that fl contains harmonic terms whose frequency
is o)j for r*e[0, L]. Hence,

(16)

Resonance relationship Type of resonance

hr ^ 0 Combination additive
resonance

some hr < 0 Combination differential
resonance

v
v/hj

= cOj, h0 =1, hr = 6rj

hr = dr

h0v/hj =

Internal resonance

Principal resonance

Subharmonic resonance
Parametric resonance
Superharmonic resonance
Rational resonances

Equating to zero coefficients containing harmonics whose
frequency is COj for T* results in

>,.+a,.DB/ + Fsj/±

= o

Solving Eq. (17) for
into Eq. (4) yields

and B^ and substituting these values

= C0j+s -

sin /c00-h Z Wr*\l/j) alk0v+ ^kr(or±coj
\ r=l

Fcjk1} COS M+Z kr^r +
L \ r = l

(18)

It should be noted that the harmonic terms in ft whose
frequency is COj for T* contribute virtual work in Eq. (9), resulting
in resonance. These terms, which are secular terms in Eq. (15),
contribute terms in Eq. (18).

The method of varying parameters,8 also known as the
averaging method, can also be applied to construct the approxi-
mate solution for nonstationary systems, although it must be
modified so that the slowly varying parameters are regarded as
constants during the averaging. For the first asymptotic
approximation solution, the analysis of the averaging method is
simpler than the averaging method. However, for higher-order
resonances and higher-order approximation solutions, the
asymptotic method presented in this paper gives a more unified
approach than the averaging method.
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Fig. 1 Schematic representation of a gyroscopic system consisting of a
disk mounted on the shaft.

Gyroscopic System
Consider the gyroscopic system shown in Fig. 1. It consists

of a rotor D, mounted on the shaft, which is supported by
two bearings C and O. The rigidity of the upper bearing C
is only assumed to be nonlinear with respect to angle /?. This
assumption is made to simplify the analysis, since the resonance
phenomena which will be discussed will be present even if bearing
C is also nonlinear with respect to angle a. However, in this
case, the analysis will be much more involved. The rotor D
is assumed to be unbalanced statically and dynamically.

The differential equations of motion of the rotor D are

[- #2 sin 0+ 0 cos 0] -eP sin 0- Ip

\p2 cos S + 9 sin 0] - eP cos 9 + Ip 9a (19)
where

/! = 7 + ML2
2, bt = bL2-PL2

The bared terms are small and of the order off. By defining
b2 = sb2, b3 = £^3, c — sc, e = se
d = v(t), 0 = e[dv(T)/df|, Q = eQ (20)

substituting Eq. (20) into Eq. (19), and neglecting terms of a
higher order of e than unity, we obtain
a+(7pv/71)jS+Ka = s{-doc-F1 sin0- \_Ip(dv/di)/I J0} (2 la)

where

^i = {RVJ
F2 = {[(/p-/)O + ML2e]v2-eP}/71

Normalization
Let the solution of Eq. (21) be in the following form:

(21b)

(22)

substituting a and /? from Eq. (23) into the resulting equation
and Eq. (21b), results in the following characteristic determinant:

K-<* -(/,v//>>=() ^

(25a)
Denoting the roots of Eq. (24) as

we obtain
CO = ±OJj

i)v-[(////i V+4*]1'2}

Cj=-coj 7=1,2 (25b)

Here the modes corresponding to the positive sign in Eq. (25a)
are considered. cov which is negative, represents an inverse
precession, and co2, which is positive, represents a direct pre-
cession. By differentiating Eq. (2la) with respect to t, substituting
a and /? from Eq. (23) into the resulting equation and Eq. (21b),
and solving for Xj+a>2Xj, we obtain

2 2

*- I I '
i = 1 fc = 1-h; t

I I I Cj3xiXkXl+Pcose] 7=1,2
i = l k = l / = l J

(26)

where

(27)

P} = (-

Asymptotic Solution

Let us assume that v ̂  CDI or co2 for any t*£[0,L], i.e., that
there is no main resonance. In this case, Xj can be represented
as follows :

XJ = XJ+AJ(T:)CQSO (28)
where Aj cos 0 is the forced vibration of the linear system due
to Pj, and AJ is given by

^=[eP/o)/-v2)] (29)
Substituting x,. from Eq. (28) and Aj from Eq. (29) into Eq. (26)
and including terms up to the order of e, results in
Xj + coj2Xj = e [0/ + #/ cos 0 + #/ sin 0 + #/ cos 29 +

(30)
where

g? =

(31)

(23)

where Yj are indefinite integrals of Xj. If Eq. (21) is un-
perturbed, i.e., if e = 0, Xj is assumed to be a harmonic function
of frequency ojj. Differentiating Eq. (2la) with respect to t and

gn
2=-2CJ2(Al

Equation (30) is a special case of Eq. (1) with n = 2. Confining
our analysis to the first asymptotic approximation, from Eq. (6)
we obtain
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f j =

= 0/ + gj2 cos 9 + #/ sin 0 4- #/ cos 29 + #/ cos 30 -
0;iXwism^i-0j/a2w2sm</'2 +
(SfJ.11 + ̂ 1

2cos0 + ̂ .1
3cos2^)(fl1cosiA1 +

(0/2 1 + 9j22 COS 0)(fll COS <A 1 + a2 COS W2 +

(32)

Combination Differential Resonance v = — 2co1 +o>2

Assume that
v(T*) = co2(T*)-2co1(r*) (33)

for some time T*. The terms in f^1 and /2
J which cause the

resonance expressed by Eq. (33) are %[g12
2aia2 cos (0 + *Ai - 1 2̂)]

for the resonance relationship v + o^ — co2 = ~w i» and
i[^222fli2 cos (0 + 2^)] for the resonance relationship v + 2o)! =
co2, respectively. Equation (18) can be used to obtain the following
nonstationary solution for the resonance relationship v =

co2)]} (34a)
(a2

2/4co1)]4-
o2)]} (34b)

o.2)]} (34c)
\l/2 = co2 + e{- to21

1/2co2)-h3^23(a2
2/8co2)+3gf23(a1

2/4co2]-
^22

2«1
2[cos(0-h2^1-^2)/4a2(v + 2co1 + w2)]} (34d)

In the stationary mode, amplitudes al and a2 are constant;
i.e.,

dj = a2 = 0 (35)
For the resonance region, using Eqs. (34) and (35), we obtain

«i2/«2
2= -2fe22

6
6f12

2co2/gf11
6gf22

2co1) (36a)
v = C0-2co1-h£[(6f11

1/w1)-fe21
1/2w2)+fl

x

6/^226)1/2 + (^26/^1
6)1/2}] (36b)

From the Routh-Hurwitz stability criteria, the stability con-
ditions are

±(dv/da} > 0, ;=1,2 (37)

STATIONARY
STABLE

^ STATIONARY
NONSTATIONARY
i» - 95 - t

60 90

Fig. 3 Nonstationary response for a combination differential resonance,
v = co2 — 2a)19 for linearly decreasing frequency of perturbation.

and the stationary amplitude a1 should be greater than af which
is the solution of the following equation :

Combination Differential Resonance v = co2 — a>l

Assume that
V(T*) = C02(T*)-C01(T*)

= 0 (38)

(39)

for some time r*e[0,L]. The terms in /j1 and /2
J which cause

the resonance expressed by Eq. (39) are ^[gll
2a2cos(9— 1/^2)]

for the resonance relationship v — o>2 = —colt and 2[^21
2fl!

cos(0H-^1)] for the resonance relationship v + coj = co2, respec-
tively. Equation (18) can be used to obtain the following non-
stationary solution for v = co2 — co^.

(40a)

(40b)

(40c)

(40d)
The stationary solution is

Fig. 2 Nonstationary response for a combination differential resonance,
v = co2 - 2co19 for linearly increasing frequency of perturbation.

arid the stability conditions are
±(dv/dai)>Q, j=l,2

(41b)

(42)
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NONSTATIONARY
v = 49 + 6t

STATIONARY
STABLE

NONSTATIONARY
v = 49 + 0.2t

Fig. 4 Nonstationary response for a combination differential resonance,
v = a)2 — col9 for linearly increasing frequency of perturbation.

NONSTATIONARY
j v = 60 + 2.5 sin t

STATIONARY
STABLE

Fig. 5 Nonstationary response for a combination differential resonance,
v = co2 - a>!, for periodically varying frequency of perturbation.

Numerical Results

The following parameters have been used for numerical
calculation :

K = 352, X1 = 6.25, K2 = 9A, y/j = 0.0625
F! = 0.128v2+0.375, F2 = 0.128v2-0.375

The nonstationary responses are obtained by numerically
integrating the nonstationary solutions. It should be noted that
the natural frequencies and amplitude of the exciting force are
functions of v; i.e., they are time dependent. The stationary
solutions of the system and the nonstationary solutions for
various functions of v are plotted for the combination differential
resonances v = <x>2 — 2(x>l and v = co2 — col in Figs. 2 and 3 and
Figs. 4 and 5, respectively. It is obvious from the nonstationary
response that the rate of the frequency of perturbation, v, plays
a significant role in the modification of the nonstationary
response. The nonstationary response may be shifted from one
stable solution to another by changing the rate of variation
of v.

Conclusions
The asymptotic method presented in this paper results in a

unified approach for the determination of the resonant response
of a nonstationary, nonlinear mechanical system for general
resonances, including combination resonances. The resonance
conditions can be used to determine the possible resonances
in a system. The first asymptotic nonstationary solution can be

obtained from the general solution, as demonstrated by the
calculation of the combination differential resonances v =
a)2 — 2a)1 and v = co2 — col of the gyroscopic system. The non-
stationary responses obtained for various functions of v indicate
that the nonstationary response may shift from one stable mode
to another when the rate of variation of the frequency of
excitation is changed.
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