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Lyapunov Controller for Cooperative Space Manipulators
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and

Brij N. Agrawal’
U.S. Naval Postgraduate School, Monterey, California 93940

The cooperative control of multiple manipulatorsattached to the same base as they reposition acommon payload
is discussed. The theory is easily applied to inertially based problems, as well as space-based free-floating platforms.
The system equations of motion are developed, as well as a Lyapunov-based controller that ensures stability. The
closed chain aspect of the problem reduces the system’s degrees of freedom resulting in more actuators than
degrees of freedom. This actuator redundancy is used to minimize a weighted norm of the actuator torques. A
polynomial reference trajectory describes the path the payload will follow. The disturbance torque transmitted
to the spacecraft centerbody by the motion of the manipulators is reduced by altering the order of the reference
trajectory polynomial and its coefficients. Results from a two-dimensional, dual-arm configuration are included.
Compared to the Lyapunov point controller alone, the addition of a fifth-order polynomial reference trajectory
leads to superior performance in terms of actuator torque magnitudes, spacecraft centerbody attitude control, and
payload repositioning accuracy and time. An eighth-order polynomial reference trajectory results in only small

improvement over the fifth-order case.

Background

PACE-based robotics platforms experience conditions unlike
those of their terrestrial counterparts. With respect to the dy-
namics of the systems, the most notable difference is the absence
of a fixed base on which to locate the manipulators. The conse-
quence of this differenceis that motion of the space-based manipu-
lator transmits forces and moments to its mounting base resultingin
translation and rotation of the base itself."?> Generally, this motion
is unwanted because the attitude control subsystem of the vehicle
must compensate. One can estimate the spacecraft attitude distur-
bance caused by manipulator motion and use that information to
command reaction wheels on the main body.3>~> As an alternative,
one could try to minimize the attitude disturbance the manipulators
transmit to the main body. For a spacecraftwith a single manipulator
with redundant kinematics, the excess degrees of freedom can be
used to minimize reactions transmitted to the main body.® Teleop-
erating a space manipulator to reduce satellite attitude disturbances
has also been studied.” If the manipulatoris sufficiently redundant,
the attitude disturbances may be eliminated altogether®
Using space manipulators to stabilize tethered satellite systems
has also been proposed.’ For spacecraft with multiple manipulators,
cooperative control takes on more than one meaning. In one case,
one manipulator repositions an object while a second manipulator,
whichis not grasping the object, moves to provide counterbalancing
torques on the main body thereby reducing the spacecraft attitude
disturbance !* A more traditional concept of cooperative control of
multiple manipulators assumes the manipulators are each in con-
tact with the payload. One control strategy developed for a fixed-
base system controls the payload position and its internal forces
using a Lyapunov controller or an adaptive controller!! A space-
based version uses objectimpedance control to position the payload
and control its internal forces.!? In this paper, cooperative control
means multiple manipulators grasping a common object moving in
harmony to reposition the object. When more than one manipulator
grasps an object, the actuatorredundancycreated by the closed chain
dynamics permits tradeoffs to be made regarding how the actuators
are used. Through appropriate selection of weighting factors, the
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user has great flexibility in choosing to what degree each actuator
is involved in repositioning the payload.

The following development of an analytical model is based on
a multiple-manipulator space robotics system. The manipulators
alreadyhavea firm grasp of the payload. The initial conditionsfor the
system are known although there may be some error in these values.
Desired final conditionsare alsoknown. The equationsof motion are
derived from Lagrange’s equations. This results in a set of second-
order,nonlinear,coupled, differentialequations. The initial and final
boundary conditions for the payload are connected by means of
a reference trajectory. Based on the payload reference trajectory,
actuator torques are computed by means of inverse kinematics. The
actuator torques are modified using a Lyapunov-derived controller.
The controller compares the reference trajectories with the actual
trajectories. The reference trajectories are selected by means of an
optimization algorithm to reduce the attitude disturbance on the
main spacecraft.

Equations of Motion

Development of the analytical model is predicated on establish-
ing the variables and coordinate systems that will describe the sys-
tem. The most general case is for a spacecraft with n manipulators
involved in controlling the positioning of a common payload. The
centerbody,manipulatorlinks, and payload arerigid bodies. A semi-
inertial axis system is located somewhere on the centerbody. The
origin of this coordinate system remains fixed to the spacecraft.
However, this coordinate frame maintains an inertial orientation.
The centerbody attitude is referenced to this coordinate frame. Each
manipulator link has its own set of body axes. The axes for each
link are attached at the point of rotation nearest the centerbody. The
x axis for each link points along the longitudinal axis of the link.
The angles that describe link orientation are joint angles with two
subscripts. The first subscript indicates which manipulator the link
belongs to. The second subscriptindicates the particular link of that
manipulator. The links are numbered outward from the centerbody.
The payload position and orientationis referenced back to the coor-
dinate frame on the centerbody. The dual two-link manipulator case
is shown in Fig 1. To eliminate gravity, this two-dimensional model
is in the horizontal plane. The z axis is perpendicular to the plane
of the motion. The generalized coordinates are

qg=1[60 61 62 Or1 6Or2 6p Xp YP]T (€8]
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Fig. 1 Dual two-link manipulator case: —», semi-inertial axes, and
—{>, body axes.

They include centerbody attitude, left and right arm joint angles,
payload attitude, and payload center of mass Cartesian coordinates.
Like the centerbody angle, the payload angle is referenced to an
inertial coordinate frame. The mounting location for the left and
right shouldersare given by the two constantangles 6, , and 6z,. The
distances from the semi-inertial coordinate frame to the shoulders
arel;yand/gy. Linklengthsare designatedas/;; and/;. Distancesto
link centersof mass contain the letter c. The controlactuatorsfor this
system consist of a reaction wheel mounted on the centerbody and
joint motors at the shoulder, elbow, and wrist of each manipulator.
The resulting control input vector is

T
u=[uy, Urs Urg Urw Urs Ure Ugrw] )

The first element is the reaction wheel torque. The next three ele-
ments are the shoulder, elbow, and wrist torques for the left manip-
ulator. The final three elements are for the right manipulator.

The equations of motion for this system are developed using
Lagrange’s equations for a dynamic system with holonomic con-
straints:

—1 = = T
dt<aq> aq_Q+A)‘ ®)

subject to the constraintequations Aq + Ay =0, where L=T -V,
T iskineticenergy, V is potentialenergy, q are the generalized coor-
dinates, ¢ are the generalized velocities, Q are the applied noncon-
servative forces, and AT \ are the constraint forces. The constraints
are imposed by the geometry of the system.

Because of the closed chain nature of the system, the choice of
generalized coordinatesin Eq. (1) is not a minimum coordinate for-
mulation. Consequently, the constraint forces [last term in Eq. (3)]
will be nonzero.

Beginning with Lagrange’s equation, the equations of motion can
be rearranged into the alternate form

v
M(q)q'+G(q,q)+8—q =Q+ATX @)

where M is the inertia matrix. The two-dimensionalsystem of Fig. 1
is confined to the horizontalplane. This prevents gravity from having
any effectand causes 3V /dg = 0, which reduces Eq. (4) to

M@d+Gg.q9=0+A"X (5)

where M is a function of the generalized coordinates and can be
found by expressing the kinetic energy in the form

T =14¢"[M(qg)lg (©)

The G matrix contains all of the centripetal and Coriolis terms.
It is most easily found using the following equations:

i'cq
. gl C? g
Gg.p=|1"1 ™
§'CcVq
o LM, aM, M,
= (S e T ®)
2\ gy 9q; g,

where C;’k) is the jkth elementin the ith C matrix.

The nonconservative forces Q may be expressed as the product
of a control influence matrix and the input vector (Q = Bu). For
the configuration of Fig. 1, the control influence matrix is

1 0 0 =1 0 0 —1T]

010 —-100 0
001 -1 00 0
B=000 01 0 -1 ©
0 00 01 -1

000 100 1

000 00O O

(000 00 0 0]

The constraints matrix A is derived by writing the system con-
straints in the Pfaffian form Agq + A, = 0. The system constraints
are those equations that describe the closed chain geometry of the
system. Explicit terms for the constraints matrix are developed in
the Appendix.

After substituting the matrix form of the generalized forces into
the equations of motion [Eq. (5)], one has

MG+ G =Bu+ A"\ (10)

Because the M, G, B, and A matrices have already been found,
the only remaining unknownsin Eq. (10) are the generalizedacceler-
ations, the actuator torques, and the Lagrange multipliers. By using
the equationsof motion and the Pfaffian form of the constraints,one
can eliminate the Lagrange multipliers. The time derivative of the
constraint equations (Aq + Ay = 0) is

Aj+Ag=0 1)

Solving Eq. (10) for ¢ and substituting the result into Eq. (11)
permits one to find an expression for the Lagrange multipliers

A= (AM'ATY""(AM~(G — Bu) — A§) (12)

Equation (12) can be substituted back into the equations of motion
[Eq. (10)] leaving the generalized accelerations and the actuator
torques as the only unknowns. As discussed in the next section,
torques are found by means of inverse kinematics. Once the torques
are known, the equations of motion can be integrated to find the
generalized coordinates as functions of time.

Inverse Kinematics

If the motion of the systemis to follow a prescribedtrajectory, then
the generalizedaccelerationsat any pointon thatreferencetrajectory
are known. Usingreferencetrajectorydisplacements, velocities,and
accelerationsin the reference trajectory equivalent of the equations
of motion [(Eq. 10)] and of the Lagrange multipliers [Eq. (12)] allow
one to solve for the actuatortorques needed to produce the reference

accelerations. These equations are
Mrchrcf + Grcf = Burcf + AT )\rcf (13)

ref’

)\rcf = (Arct'Mr_cflAZ;f)_l (Archr:fl (Grcf - Burcf) - Arcf qrcf) (14)
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After substituting Eq. (14) into Eq. (13), the terms can be rear-
ranged to produce equations of motion in the form

Mqrcf + G = Eurcf (15)
where

M = Mrcf

G= Grcf - Arct (ArctMrct Az;t) 1 (ArctMrct Grct rct qrct)

B=(I-AL(AuM AL

ref *“ref,

) ArctMrct ) B

In this study, the total number of actuators is more than the sys-
tem degrees of freedom. This situation is caused by the geometric
constraintsof multiple manipulatorshandlinga common object pro-
ducingan excess of actuatorsas comparedto degrees of freedom. As
a result, there are an infinity of solutions for the reference torques.
One method to select a specific solutionis to establishand minimize
a cost function. An obvious cost functionis a weighted norm of the
actuator torques

J=Lul w ulref (16)

2 rct

where W, is a user defined weighting matrix. The problem now
becomes one of minimizing the cost function [Eq. (16)] subject to
the constraint that the reference equations of motion are satisfied
[Eq. (15)]. Augmenting the cost function with the constraint by
means of another Lagrange multiplier y leads to

These values for reference actuatortorques minimize the augmented
cost function [Eq. (17)] at each instantin time.

Lyapunov Controller

To develop a controller with guaranteed stability for this highly
nonlinear system, one could choose a Lyapunov approach. If one
substitutes Eq. (12) into Eq. (10) and solves for ¢, the result can be
expressed as

Gg=Ciu+ Cq+Cs 2D
where
C,=M"I—AT(AM AT 'AM~}B
C,=—-MTAT(AM AT A
C; =M Y AT(AM'ATY'AM™' - I}G

Similarly, the reference maneuver accelerationscan be expressed
as

qrcf = Clrcfurcf + CZrqurcf + C3rcf (22)

where the ref subscripts on the C matrices indicate that reference
maneuver values need to be used in their calculation.Let error quan-
tities between the actual variables and their reference maneuver
counterparts be defined by

. - 39 = q — grr, 34 = q — qret. 8¢ =4q— Gs (23)
J = —uth Ues + Y (Bumt qut- - G) an
Now define an arbitrary error Lyapunov function as
The minimum of the augmented cost function is found by taking
the gradient of Eq. (17) with respect to the reference torques and U=0.506q-8q)+ f(5q) (24)
with respect to the Lagrange multiplier. Each of the gradientsis set
to zero as follows: where f(8¢q) > 0. Differentiating Eq. (24) results in
V,.J =0=W,u—+ BT 18 .
L () U=sq- ‘3‘”2_3(5 >34 (25)
VyJ =0=Buy—Mq,,—G (19)
Equations (18) and (19) are two equations in two unknowns Let
(7, Urer). To eliminate~y, solve Eq. (18) for u,s and substitute the re- of of of T
sultinto Eq. (19). Solve this equation for -y and substitute back into = [ ‘e i| (26)
Eq. (18). Then solve for u, to get an expression for the reference 3@q)  3(8g2) 3(847)
actuator torques: Then Eq. (25) can be rewritten as
U = W, BT (BW,'BT) ™ (M + G) (20) U=25q-(5G+F) 27)
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Fig.2 Desired repositioning maneuver.
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Substituting Eqs. (21) and (22) into Eq. (23) and then Eq. (23)

into Eq. (27) produces
U = Bq . [(Clu - Clrcf”rcf) + (CZq - CZrqurcf) + (C3 - C3rcf) +F]
(28)

If one lets the quantity inside the brackets of Eq. (28) equal
—K,8q where K, is a positive definite matrix, then one is guar-
anteed that U <0 and, therefore, the system will be stable in the
Lyapunov sense. K, is assumed to be a diagonal matrix with gen-
eralized coordinate vector velocity gains on the main diagonal and
zeros elsewhere. Solving Eq. (28) for command torques u leads to

200 T
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k
°
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Fig.3 Lyapunov point controller angles.
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Fig. 4 Lyapunov point controller command torques.

u= Cll [_ Kv(sq + Clrcf”rcf - (CZq - CZrqurcf) - (C3 - C3rcf) _(F])
29

Equation (29) finds the torques that should be usg:d ratherthan the
reference torques. C; is an 8 x 7 matrix so that C, is its pseudoin-
verse. All that remains is to choose a functionfor f (8¢) that satisfies
f(8g) = 0.0ne canchose f(8¢q) = 0.55q" K p8q, where K » has the
same diagonal form as K. This makes the error Lyapunov function
analogous to mechanical energy.

Reference Trajectories
The reference trajectories describe the nominal path that the sys-
tem follows in moving from the initial conditionsto the desired final
conditions.One need only specify reference trajectories for as many

100
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Fig. 6 Nominal fifth-order angles.
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Fig.7 Nominal fifth-order command torques.
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Fig. 5 Lyapunov point controller time-lapse stick figure.
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generalizedcoordinatesas there are degrees of freedom. The choice
of which generalized coordinates to specify is entirely arbitrary. A
reasonable choice is any set that includes the payload coordinates
and centerbody attitude because the user will probably be especially
interested in these coordinates. Any path that connects the associ-
ated endpoints can be a reference trajectory. Recall, however, that
the usefulnessof the reference trajectoriesis to permit calculationof
the generalized coordinates positions, velocities, and accelerations
for use in the inverse kinematics calculations. To help ensure that the
payloaddoesnotexperienceany unnecessaryjerk, one might further
constrainthe path such that the velocities and accelerationsare zero
at the endpointsand continuousin between. Therefore,a convenient
form for the referencetrajectoryis as a polynomial function of time.
The user decides the maneuver duration in advance. The minimum-
order polynomial that satisfies the preceding boundary conditions
is
f(r) =67 — 15¢* 4+ 1073 (30)

where 7 is the normalized time, T = (¢ — #y)/(t; — ), and ; and
t, are maneuver start and stop times.

The following equationsillustrate how this fifth-orderpolynomial
referencetrajectory would apply to the payload attitude generalized
coordinate:

AOp = 0p(ty) — Op ()

Ope (1) = Op(tg) + (677 — 157* + 107°)(A,)

31

(32)

Op. () = (307 — 607° + 30f2)(A9P)<t ! - ) (33)
VA

§ 5 (1) = (1207° — 18072 + 60r)(A9p)<;> (34)
(t; — 1)?

Higher-order polynomials can increase the complexity of the
path but offer the advantage that an infinity of polynomial coeffi-
cients satisfy the position, velocity, and acceleration boundary con-
ditions. This affords an opportunity to select the coefficients based
on another optimization function. Because a reaction wheel on the
centerbody will be required to maintain spacecraftattitude, the reac-
tion wheel torque history is a prime candidate for optimization. Pos-
sible cost functions include the integral of the absolute value of re-
action wheel torque or the maximum reaction wheel torque given by

tr
J =/ |uwhccl|dt or J = max(luwhccll) (35)
fo

Results

The system used to generate these results is a dual two-link ma-
nipulatorconfigurationsimilar to Fig. 1. The system properties used
for the simulations are listed in Table 1.

The stick figure representation of Fig. 2 depicts the initial and
final conditions of the desired maneuver (payload will rotate 90 deg
and its right endpoint will finish where the left endpoint started).
Four cases are presented to illustrate the system dynamics and the
effect of using a reference trajectory. In all but one case, the bound-
ary conditions of the payload are the same. All seven actuators are
weighted equally in the torque calculations [Egs. (16-20)].

In the first simulation, the repositioning is done entirely by the
Lyapunov controller without the benefit of a reference trajectory.
Figure 3 presents the angular displacement history. The payload
Cartesian coordinate profiles (X and Yp) are not shown but are
very similar in appearance to the payload attitude profile 6. The
asteriskson the right side of the plotindicate the desired final angles.
Although the system is approaching the desired final geometry, it
has not completely settled down even after 40 s. Position errors are
still present, as well as nonzero velocities. Also, the reaction wheel
torque is quite high during the maneuver (Fig. 4). The oscillatory
nature of the system is evident in the angular position and velocity

Table1 System properties

Length, m Mass, kg Center of mass, m Moment of inertia, kg-m2 Shoulder location, deg
Parameter  Value Parameter Value Parameter  Value Parameter Value Parameter Value
lL() 0.75 my 5 lC() 0 I() 5 9L0 90
lLl 0.5 nmrp 1 lL‘Ll 0.25 ILI 0.02083 91(() 45
le 0.5 nmpo 1 lL‘Lz 0.25 IL2 0.02083 _— _—
lR() 0.5 me1 1 lL‘Rl 0.25 IRI 0.02083 _— _—
lRl 0.5 npego 1 lL‘Rz 0.25 IR2 0.02083 _— _—
5% 0.5 mp 1 lcp 0.25 Ip 0.02083 R R
Ip 0.75v2 S — S S S S S S

1.6 T T T
14 - y
1.2 |- —
1.0 |- ]
Y(m) 08 |- -
0.6 -
04 ]
02 - i

0 1 1

-0.5 0 0.5 1.0
X (m)

Fig. 8 Nominal fifth-order time-lapse stick figure.
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plots. This behavior is also evident in Fig. 5, which shows a time-
lapse representation of the system geometry at several instances
during the maneuver. This controller also does a poor job of main-
taining the centerbody attitude. This is clearly evidentin Figs. 3 and
5. The attitude error peaks at about 16 deg.

The second simulation uses a fifth-order polynomial reference
trajectory [Eq. (30)] applied to the payload generalized coordinates.
Commanded control torques are calculated based on Eq. (29). This
equation considers the errors with a reference trajectory, as well as
reference torques produced from minimizing a weighted norm of
the actuator torques associated with the reference trajectory. The
maneuver time was selected to be 10 s. As is evidentin Fig. 6, the

100

50

Angles
(deg)
-50

100 8 =

-150 =3
10 20
Time (sec)

<

Fig. 9 Perturbed fifth-order angles.

Command 003

system successfully moves from initial conditions to desired final
conditions. The command torques (Fig. 7) are an order of magnitude
smaller than in the earlier case. More importantly, the centerbody
attitude is maintained throughoutthe maneuver. Figure 8 shows the
time-lapse depiction of the maneuver.

The third simulation s a variation on the second one. Everything
is the same exceptfor the initial conditions. The controlleris told that
the initial conditions are the same, but the true initial conditions are
such that the payloadis tilted 10 deg. This case tests the stability of
the controllerand illustrates that perfect information is not required
in order to obtain good results. As can be seen in Figs. 9-11, the
simulation exhibits damped oscillatory behavior but not as severe
as the Lyapunov point controller.

The fourth simulation is the same as the nominal fifth-order case
except for the use of an eighth-order reference trajectory polyno-
mial. The polynomial was picked to minimize the integral of the
absolute value of the reaction wheel torque [Eq. (35)]. The resulting
polynomial is

f(r) =0.07947% + 0.64107” + 0.02787°
+1.27647° — 8.59737t* + 7.5727¢° (36)

The trajectories that result from this polynomial are very similar
to the fifth-order reference trajectories. As one might expect, the
performance is also very similar.

Comparing the values produced by integrating the absolute value
of the reaction wheel torque [Eq. (35)] for the four simulations
provides a means to distinguish between the cases. A second metric
is the absolute value of the maximum reaction wheel torque [also
Eq.(35)]. Anotherobviouschoiceis to boundthe centerbodyattitude
error during each simulation. The results are summarized in Table 2.
Clearly the point controlleris the worst controller based on all three
metrics. The difference between the nominal fifth- and eighth-order
tracking controllers is only slight.

Torques Table2 Comparisons of simulations
(N-m) 0
Centerbody
attitude
-0.05 Controllers f |t wheel | df | Umax | error, deg
Lyapunov point controller 17.3841 2.9365 16.2261
-0.10 Tracking controller
Nominal fifth order 0.5746 0.0961 0.0000
Time (sec) Perturbed fifth order 0.5748 0.1092 0.3565
Nominal eighth order 0.5705 0.0885 0.0000
Fig. 10 Perturbed fifth-order command torques.
1.6 T T T

L4 - 1
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Y(m) 08 1

0.6 |- -1

04 - -1

02 - -1

O 1 1
-0.5 0 0.5 1.0 1.5
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Fig. 11 Perturbed fifth-order time-lapse stick figure.



YALE AND AGRAWAL 483

Conclusions

The problemofrepositioninga payloadthatis graspedby multiple
manipulators mounted on the same free-floating base is addressed.
The closed chain nature of the problem allows for an infinite set
of joint actuator torques to accomplish the maneuver. A technique
is presented whereby a weighted norm approach selects a torque
profile to use. Use of polynomial reference trajectory significantly
improves the performance of the system. As the order of the poly-
nomial increases, the redundancy of the coefficients can be used to
select values that lead to reduced centerbody attitude disturbance.
The biggest improvementis from including the polynomial trajec-
tory in the first place. The minimal improvement achieved by in-
creasing the order of the polynomial probably does not warrant the
additional computational expense.

Appendix: Dual Two-Link Manipulator Matrix Terms

For the dual two-link manipulatorcase shown in Fig. 1, the inertia
matrix is given by

M, M, My My Mys 0 0 0]
My, My, My 0 0 0 0 0
My, M;, My 0 0 0 0 0
M. 0 0 My M 0 0 0

M= 41 44 45 (A1)
MSI 0 0 M54 M55 0 0 0
0 0 0 0 0o I, O 0
0 0 0 0 0 0 mp O
| 0 0 0 0 0 0 0 mp
where

Mss = I, + mRzlciz
Mys = Msy = Mss + mpylgilcgy cosOgy
My = M3, = My + mplpileps cosfp,

M5 = M5, = Mys + m gyl golcgy cos(Ogy + Or2)

Myy = Mys + I + Mgyl lcgocosBpo + mpilch, + mpols,
My = Mgy = My + lro(mpilcgy + mpolgi)cos Or,
+m galrolcgy coS(Or1 + Ora)
My =11, + mLleiz
My, = M3 + Iy +mypslleycosfry + lelcil + mLzlzl
M3 = M3, = My + mysliplep; cos(0r1 +61,)
My = My = My + lo(mpilepy + mypplii)cos0p,
+mpaloless cos(@r) + 012)
M, =1+ molcg + 2m polpolcry cos(@r; + Or2)
+ ((mm + mp2)lzy + 2lgo(mpileg; + mRlel)COSQRl)
+ (mp + mLZ)lzg + 2lpo(mpilery + mpslp)cos6p,

+2mpalpolers cos(Bpy + 0r2) + My + My,

Because the generalized coordinates for the payload are refer-
enced to the centerbody coordinate frame, the inertia matrix is de-
coupled between the payload and the rest of the system. Coupling
does exist between the spacecraft centerbody and each of the ma-
nipulators.

To develop the constraints matrix A, the dual two-link manipu-
lator system described uses eight generalized coordinates. Because
this system has only four degrees of freedom, an additional four
equations are needed to describe the constraints. These equations
come from geometric relationships describing the payload center

of mass Cartesian coordinates in terms of the left and right arm
generalized coordinates:

Xp =1Ig9cos(@y + 6ro) + 111 cos(@y + Oro + 1)

+ 175 co8(6g + 6019+ 011 + 015) + lcp cosOp (A2)
Yp =110sin(6y + 6010) + 111 sin(6y + 010 + 611)

+ 115 8in(@y + 0o + 011 + 015) + lcp sinfp (A3)
Xp =lgogcos(by + Oroy) + Lg) cos(Gy + Oro + Or1)

+Igy cos(By + Oro + Or1 + Ora) — (Ip — lcp)cosbp (A4)
Yp = lposin(@y + Ogo) + gy sin(6y + Oro + Or1)

4+ lgo sin(@y + Oro + Or1 + Or2) — (Ip — lcp)sinbp (A5)
To get the Pfaffian form, differentiateEqs. (A2-A5) and rearrange

terms. The followingequationsexpressthe result. The constantterm
Ay, 18 a zero vector:

i
éLl
Ay A Az O 0 A -1 0 612 0
Ay Ayn An 0 0 Ax 0 —1]| 6k 0
Ay 0 0 Ay As Ay -1 0 | |6 | |0
Ay 0 0 Ay Ay Ay 0 -1 ép 0
Xp
_YP_
(A6)

where
A = —lcp sinfp, Ayg = lcp cosBp

Az = (Ip —lcp)sinbp, Ay = —(p — lcp)cosOp
Ays = lgy cos(0y + Oro + Or1 + Or2)
Ay = Ays + Ipi cos(6y + Oro + 1)

Ay = Ay + o cos(@y + Oro)
Ass = —lgy sin(6p + Oro + Or1 + Or2)
Asy = Ass — gy sin(0y + Oro + Or1)

Az = Ay — lrosin(®y + Oro)
Agz = lpaco8(6 + 6o + 611 + 612)
Ay = Az +111c0s(0p + 0o + 011)

Ag = Agy +1rocos(6h + 010)
A = —lpysin(@y + 0o + 01 + 012)
A=Ay =l sin(@ + 0o + 011)

Ay = A —lposin@® + 0ro)
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