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Air-bearing-based spacecraft simulators are widely used to develop and verify spacecraft control techniques

required by modern spacecraft applications. To create a spacelike environment with ground spacecraft simulators,

the effects of gravity should be minimized. For a spherical air-bearing system with 3 rotational degrees of freedom,

the center of rotation of the spacecraft simulator should be exactly aligned with the center of gravity. This paper

presents the automatic mass balancingmethod, which compensates for the center of gravity offset from the center of

rotation by actuating three proof masses on linear motion stages. Adaptive control of the automatic mass balancing

system is usedwhile the balancingmasses are actuated in real time. The proposed techniques are implemented on the

ground-based three-axis spacecraft simulator for the bifocal relay mirror spacecraft.

I. Introduction

G ROUND simulation and testing of spacecraft dynamics is
highly desirable because it is extremely difficult to test and

reconfigure the system once the vehicle is in space. Rigorous ground
testing of spacecraft dynamics will significantly reduce various risks
to the project. Ground-based spacecraft simulators often use air
bearings to simulate frictionless and microgravity space environ-
ments. Various air-bearing-based spacecraft simulators have been
developed in the past ([1–16]), and a historical review is presented in
[17]. Planar air-bearing systems use a set of air pads mounted under
the test article to achieve frictionless sliding over a smooth surface.
The planar air-bearing systems are capable of providing 1 rotational
and 2 translational degrees of freedom and they are often used for
simulations of formation flying, rendezvous, and docking. However,
spherical air-bearing systems are often preferred for spacecraft
attitude dynamics and control simulations because of their capability
of providing a full 3 degrees of freedom rotational motion.

Despite the advantage of creating a nearly frictionless test platform
with the air-bearing systems, there are various disturbance elements
with the air-bearing-based simulators which limit perfect
reproduction of the space environment. According to [18], the
disturbance torques are divided into four categories: torques arising
from the platform, torques from the air bearing, torques from the
environment, and torques from the test system. A gravitational
disturbance is created by the unbalance of the platform. The
gravitational disturbance is not a concern for planar systems as long
as the sliding surface is perpendicular to the direction of the
gravitational acceleration. Spherical air-bearing-based spacecraft
simulators, however, require the center of gravity to be precisely
aligned with the center of rotation of the spacecraft. When the center
of gravity is located below the center of rotation, the spherical air-
bearing test bed behaves similar to a pendulum system. Because the
pendulum system has a stable equilibrium point when the center of
gravity is located along the gravity vector, the balance of the system

cannot be guaranteed just by observing the simulator maintaining
one fixed attitude. According to [1] and the authors’ experience, the
most effective way for manual balancing is to balance two horizontal
axesfirst by inspecting the simulator tilt at the equilibrium point, then
raising the vertical balance mass until the period of the pendulum
motion becomes very large.As the center of gravity approaches close
to the center of rotation by raising the vertical balancemass, checking
the pendulum motion becomes difficult due to the rotational travel
limit of the spacecraft simulator. Therefore, manual balancing of the
simulator is a time-consuming process with limited accuracy.

To overcome the difficulties associated with the manual balan-
cing, automatic mass balancing systems have been considered
in many references [2–13]. In fact, many recently built spacecraft
simulators either employ automatic mass balancing systems already
[2–5] or plan to upgrade in the future [14]. The automatic mass
balancing system is composed of three proof masses on three
individual linear stages, which can alter their positions relative to the
spacecraft body. Small and Zajac [6] presented a linear control
design in which a computer simulated automatic mass balancing
system reduced the external torque to within 0:0005 N �m, but the
maximum unbalance torque of 0:001 N �m is sufficient for typical
attitude control system experiments. In this approach, the horizontal
plane is balanced first by actuating the twomasses along the two axes
on the plane. Then the mass translating along the vertical axis is used
to balance the simulator with a 20 deg tilt. This procedure is repeated
for the balancing of the horizontal plane. The controller is designed
based on the positional error from the initial position. The cross
coupling between axes is ignored. Hatcher and Young [7] performed
an experiment on automatic balancing by adjusting the position of
the balance mass based on the differences in the actuator torque for
each axis during limit-cycle operation. The balancing results showed
a maximum disturbance torque of 0:001 N �m with the average of
0:0003 N �m.

Direct estimation of the center of gravity is also frequently
considered for automatic mass balancing. From the center of gravity
estimation, displacement of the balance masses for compensation of
unbalance can be determined. Batch estimation techniques are
presented in [12,15,19–21], where a least-squares estimation is used
to determine unknown parameters including the inertia matrix and
the center of gravity. Various formulations of least-squares
estimation can be considered such as the torque method [19], the
momentum integral method [19], the filtering method [20], and
the energy balance method [21,22]. Another method to determine
the center of gravity is presented in [2], which is recording a set of the
spacecraft’s state equilibrium points for different locations of
the balance masses. Because these equilibrium points indicate that
the center of gravity is located along the gravity vector, the
relationship between the known set of balance-mass positions and
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the resulting equilibrium points can be used to estimate the location
of the center of gravity. To achieve better balancing results from the
batch estimation methods, it is desirable to repeat the estimation and
compensation process until satisfactory balancing is achieved. The
batch estimation methods can be thus time consuming. Although
recursive estimation techniques using the extended Kalman filter
[23] and the recursive least-squares algorithm [16]were proposed for
the center of gravity estimation, actuation of the balance masses
during recursive estimation was not considered due to convergence
and stability problems.

Static unbalance is not the only source of gravitational disturbance
on the spacecraft simulator. Because of the rotating and moving
parts, flexible cables, deformation of structures (sagging), and
vibration offlexible structures, spacecraft simulators also suffer from
dynamic unbalance. There are other sources of disturbances
including disturbances from the surrounding environments such as
air currents, air damping, magnetic fields, and radiation pressure
[18]. These are inherently present for ground-based spacecraft
simulators. Therefore, verification of mass balancing results is a
challenging task. Even considering static unbalance only, gravita-
tional disturbance varies depending on the attitude of a spacecraft. To
determine the maximum and average disturbance torque of the
spacecraft simulator, inspection of disturbance torques is required at
all possible combinations of spacecraft attitude, angular/linear
position of rotating/translating parts, maneuver rates, etc., which is
impossible to do. It is suggested in [8,13] to evaluate the effective-
ness of the automatic balancing procedure by observing the
oscillation period of the simulator. Although thismethod can provide
themagnitude of the unbalance, the simulator should be able to rotate
freely in any direction in order to inspect the oscillation period from a
certain unbalance. Because most air-bearing-based simulators have
at least one axis with a rotational travel limit, it is not possible to
determine the oscillation period for all cases. In addition, dynamic
unbalance and other external disturbances can affect the period of the
pendulum motion.

In this paper, a rigid-body spacecraft simulator equipped with
momentum exchange devices is used as a mathematical model. This
model has a nonlinear coupling between the three axes of the
spacecraft. An automatic mass balancing system is first introduced
and the relationship between the balance-mass actuation and the
center of gravity shift is determined. A batch estimation method for
the inertia matrix and the center of gravity is presented as a first step
for automatic mass balancing. This batch estimationmethod is based
on the integrated form of the torque method presented in [19] and
used as a base method for automatic mass balancing. The adaptive
control method for the automatic mass balancing system is presented
next. The first idea is to actuate the balance masses in the direction
along which the total angular momentum of the spacecraft simulator
becomes constant, which is equivalent to zero external torque. The
result of this method will drive the spacecraft simulator toward an
equilibrium point of a pendulum motion with incorrect center of
gravity compensation as explained later. To solve this problem, the
spacecraft simulator is excited persistently with a preplanned
spacecraft momentum trajectory. The balance masses are actuated
toward the direction where the error between the actual and
preplanned momentum trajectories become zero. Any gravitational
disturbance by the unbalance is eliminated from the proposed design
for the spacecraft simulator represented by the aforementioned
mathematical model.

To verify the adaptive automatic balancing control design,
experimental results are also included in the paper. The air-bearing-
based three-axis spacecraft simulator developed at the Naval Post-
graduate School (NPS) is used for experiments. This spacecraft
simulator is a second generation air-bearing test bed developed at the
NPS to demonstrate the operation of the bifocal relay mirror
spacecraft (BRMS). The adaptive automatic mass balancing method
is based on themathematicalmodel that accounts for static unbalance
only, whereas the actual spacecraft simulator suffers also from
dynamic unbalance, various disturbances, and sensor/actuator errors.
The discussion of the experimental results is presented to evaluate the
effectiveness of the adaptive mass balancing control method for the

actual system and to identify the future improvements for various
applications of automatic mass balancing systems.

II. Automatic Mass Balancing System

An automatic mass balancing system is typically composed of
three moving balance masses on linear stages as illustrated in Fig. 1.
The three balance masses move along the unit vector directions
represented byu1,u2, andu3. In Fig. 1, these unit vectors are located
parallel to the three axes of the spacecraft body. This is not a
requirement for the mass balancing system as long as the net
displacement of the balance masses can create a three-dimensional
mass shift. The endpoints of the vectors,�1,�2, and�3, represent the
zero locations of the balance masses. The balance-mass displace-
ments d1, d2, and d3 are referenced from these zero locations. The
location vector of each balance mass represented in the spacecraft
body frame centered at O can be written as

R i � �i � diui �i� 1 � � � 3� (1)

The center of gravity vector r is computed as

r � 1

m

Z
B

R dm� 1

m

�
�m�mB�R0 �

X3
i�1

miRi

�
(2)

wherem is the total mass of the spacecraft including balance masses,
mB �m1 �m2 �m3 represents the sum of balance masses, andR0

is the center of gravity vector without balance masses. When the
spacecraft simulator is perfectly balanced, r is a zero vector. When
the balance masses are moved by�di (i� 1 � � � 3), the new location
of the center of mass becomes

r 0 � 1

m

�
�m�mB�R0 �

X3
i�1

mi��i � �di ��di�ui�
�

(3)

The change in the center of mass vector becomes

�r� r0 � r� 1

m

X3
i�1

mi�diui (4)

We define the estimated center of gravity vector of the spacecraft
including the balance masses as r̂. To compensate for the center of
gravity offset of r̂,�r in Eq. (4) should be equal to �r̂. Substituting
�r��r̂ and solving for �di yields

�d���m1u1 m2u2 m3u3 ��1mr̂ (5)

where �d� ��d1 �d2 �d3 �T . When the three balance masses
are aligned along the three spacecraft body axes as shown in Fig. 1,
Eq. (5) can also be written as

�d��diag
�

1

m1

;
1

m2

;
1

m3

�
mr̂ (6)

Fig. 1 Automatic mass balancing system.
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where diag� � represents a diagonal matrix. If the correct center of
gravity vector is estimated, the static unbalance of the spacecraft
simulator can be eliminated using Eq. (6). It should be noted that the
exact mass of the spacecraft simulator is also required in Eq. (6) for
correct compensation of the center of gravity offset. The exact mass
of the spacecraft simulator is difficult to measure because spacecraft
simulators are usually quite heavy. Therefore, it is better to include
the mass of the simulator and estimate the combined value (mr).

The inertia of the spacecraft is also altered as a result of the center
of mass offset correction. We define the estimated inertia of the
spacecraft simulator before the correction of the center of gravity

offset as Ĵ. This inertia matrix can be broken into two parts as

Ĵ� Ĵs �
X3
i�1
��mi�Ri	��Ri	�� (7)

where Ĵs stands for the estimated inertia matrix without balancing
masses and �Ri	� is a cross-product matrix corresponding to the
position vector of the ith balance mass, where the cross-product
matrix is defined by the following relationship:

�a	� �
0 �a3 a2
a3 0 �a1
�a2 a1 0

2
4

3
5; a�

a1
a2
a3

2
4

3
5 (8)

The new inertia matrix after the center of mass offset compensation
becomes

Ĵ 0 � Ĵ �
X3
i�1
��mi�Ri	��Ri	�� �

X3
i�1
��mi�R0i	��R0i	�� (9)

where

R 0i � ��i � �di ��di�ui� (10)

III. Batch Estimation of the Center of Gravity

In this paper, a rigid-body three-axis spacecraft simulator with
momentum exchange devices is considered. A simple equation
describing the dynamics of the spacecraft simulator in the spacecraft
body-fixed coordinates is written as

J _!� ! 	 J!�� _h � ! 	 h� r 	mg (11)

where J is the total moment of inertia including the momentum
exchange devices,! is the angular rate of the spacecraft,h is the total
momentum of the momentum exchange devices,m is the total mass,
r is a constant vector from the center of rotation to the center of
gravity (center of gravity vector in spacecraft body frame), and g is
the gravitational acceleration vector. The unknowns to be estimated
in Eq. (11) are the inertia matrix J and the mass of the spacecraft
simulator times the center of mass vector,mr. Defining the matrix�

and the vector of inertia matrix elements ~J as

��
!1 0 0 !2 !3 0

0 !2 0 !1 0 !3

0 0 !3 0 !1 !2

2
4

3
5

~J� � Jxx Jyy Jzz Jxy Jxz Jyz �T
(12)

Equation (11) can be rewritten as

_� ~J�! 	�~J�� _h � ! 	 h � �g	�mr (13)

Equation (13) may be written in matrix form, which is also done
in [2]:

� _�� ! 	� �g	� �
~J
mr

� �
�� _h � ! 	 h (14)

Equation (14) requires the knowledge of _!which requires numerical
differentiation of the rate gyro signals. Therefore, direct application

of the least-squares method is not desired. In this paper, simple
integration of Eq. (14) is used as follows:�

��
R
t
t0
��!	��� dt

R
t
t0
�g	� dt

�
~J
mr

� �
��h �

Z
t

t0

�! 	 h� dt

(15)

Equation (15) is in the form of a linear equation �x� y, where
x� � ~J mr �T is the unknown vector to be estimated. The standard
form of the least-squares problem becomes �x� y, where

��

��t� t0�
��t� t1�

..

.

��t� tn�

2
6664

3
7775; y �

y�t� t0�
y�t� t1�

..

.

y�t� tn�

2
6664

3
7775 (16)

Then the least-squares solution becomes x� ��T���1�Ty. The
resulting estimated values of mr can be directly used for
compensation of the center of gravity vector using the following
equation:

�d��diag
�

1

m1

;
1

m2

;
1

m3

�cmr (17)

wherecmr denotes the estimated value of the simulatormass times the
center of gravity vector.

IV. Adaptive Control of the Automatic Mass
Balancing System

The batch estimation technique discussed in the previous section
requires accurate estimation of parameters for compensation of the
center of gravity offset. Because of various reasons including
inaccurate mass values and locations of balance masses, sensor and
actuator errors, dynamic unbalance, and environmental disturbances,
the compensation result may not yield a required gravity-free
simulation environment level with just a single batch estimation. To
avoid repeated batch estimations for improved balancing results, an
adaptive control method with the online actuation of the automatic
mass balancing system is proposed. The proposed method assumes
that the estimate of the spacecraft inertia is initially available. The
inertia of the spacecraft simulator can be estimated using the method
presented in the previous section. The equation of motion for a
spacecraft simulator in body-fixed coordinates can be written as

_H� �!	�H�m�r 	 g� (18)

where the time-varying center of mass vector r�t� can be written as

r �t� � r0 � �r�t� (19)

H represents total momentumof a spacecraft simulator, r0 represents
the center ofmass location vector at time zero, and �r is the change of
the center ofmass due to the automaticmass balancing actuation. The
problem consists of actuating the balance masses so that the
compensation for the unknown r0 is achieved.When the simulator is
perfectly balanced, �r becomes �r0 such that r� r0 � �r� 0. The
total momentum in Eq. (18) is written as

H � J!�
X3
i�1

Ri 	mi
_Ri � h (20)

where h is the momentum of the momentum exchange device. Note
that the spacecraft inertia matrix (J) is now time varying and is
determined by the balance-mass positions. The inertia of the
spacecraft without balancing masses can be written as

Js � J�0� �
X3
i�1
��mi�Ri�0�	��Ri�0�	�� (21)

Then the inertia matrix at time t can be computed as
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J�t� � Js �
X3
i�1
��mi�Ri�t�	��Ri�t�	�� (22)

The spacecraft equation of motion in Eq. (18) can be further
written as

_H s � �!	�Hs � � �m�g	��r0 � �r� (23)

where

H s � J!�
X3
i�1

Ri 	mi
_Ri; � �� _h � �!	�h (24)

Proposing the feedback control law as � � ��K � �!	��Hs with
symmetric positive definite matrix K, the closed-loop equation of
motion becomes

_H s � KHs ��m�g	��r0 � �r� (25)

We define the candidate Lyapunov function as

V�Hs; �r� � 1
2
HT
sHs � 1

2
�r0 � �r�T��1�r0 � �r� (26)

where � is a symmetric positive definite matrix. The time derivative
of the candidate Lyapunov function becomes

_V �HT
s
_Hs � �r0 � �r�T��1 _�r

�HT
s ��KHs �m�g	��r� �r�� � �r0 � �r�T��1 _�r (27)

The adaptation rule is chosen as

_�r�m��g	�THs (28)

The adaptation rule can be further written as a function of the
positions of the mass balancers for implementation purposes. It can
be shown that

�r� 1

m

X3
i�1

mi�diui �
1

m
G�d (29)

where �d� � �d1 �d2 �d3 �T and G� �m1u1 m2u2 m3u3 �.
The time derivative of the equation yields

_�r� 1

m
G _�d (30)

Then the adaptation rule becomes

_�d�m2G�1��g	�THs (31)

The time derivative of the candidate Lyapunov function with the
proposed adaptation rule becomes

_V ��HT
s KHs (32)

which is negative semidefinite. Since �r and � are bounded, _Hs is also

bounded. The derivative of _V is

�V ��2HT
s K _Hs (33)

which is also bounded. Therefore, the momentum Hs is stable and
goes to zero as time goes to infinity. Because themomentumHs goes

to zero, the control input � and mass balancing actuation _�r also
become zero. This indicates that the total angular momentum

H � J!�
X3
i�1

Ri 	mi
_Ri � h

becomes constant in the end.
Although the total angular momentum will be conserved

eventually with the proposed control method, it is not sufficient for

balancing the system. There exists a state where total angular
momentum is conserved even when the center of mass does not
coincide with the center of rotation. Because the rank of the
skew symmetric matrix �g	� is always 2, there exists a null vector
solution that makes the gravitational torque zero such that
�g	�m�r0 � �r� � 0. From the following equation, any real k will
not affect the motion of the spacecraft simulator since �g	�kg� 0,

_H s � �!	�Hs � � �m�g	��r0 � �r� kg� (34)

This corresponds to a situation where the center of mass is located
along the gravity vector as shown in Fig. 2. The system will be in the
equilibrium state with the center of mass located along the gravity
vector as a result. To ensure balancing in any state, the simulator
needs to maneuver constantly. The simplest solution is to generate a
desired spacecraft momentum trajectory that can provide persistent
maneuvering of the spacecraft simulator. We define the desired
spacecraft momentum trajectory to be Hd. Proposing the candidate
Lyapunov function as

V�Hs; �r� � 1
2
�Hs �Hd�T�Hs �Hd� � 1

2
�r0 � �r�T��1�r0 � �r�

(35)

the time derivative of the candidate Lyapunov function becomes

_V � �Hs �Hd�T� _Hs � _Hd� � �r0 � �r���1 _�r (36)

The combined feedback and feedforward momentum tracking
control law is proposed as

� ��K�Hs �Hd� � �!	�Hs � _Hd (37)

The time derivative of the candidate Lyapunov function becomes

_V � �Hs �Hd�T ��K�Hs �Hd�

� �g	�m�r0 � �r�� � �r0 � �r���1 _�r (38)

Let the adaptation law be

_�r�m��g	�T�Hs �Hd�

or equivalently

_�d�m2G�1��g	�T�Hs �Hd� (39)

Then, the time derivative of the candidate Lyapunov function
becomes

_V ���Hs �Hd�TK�Hs �Hd� (40)

It can also be shown that the spacecraft momentum tracking error
becomes zero as time goes to infinity. When the tracking error
becomes zero, Hs converges to Hd and the external gravitational
disturbance torque becomes zero. Because the spacecraft is con-
stantly maneuvering, the center of gravity also converges to zero to
have a zero gravitational disturbance torque.

To verify the proposed control law, a computer simulation is
developed. The top two plots in Fig. 3 show the results of the adaptive

Fig. 2 Null vector solution example.
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mass balancing control simulation without persistent excitation of
the simulator. The angularmomentumof the spacecraft (shown in the
top left plot) becomes zero as the center of mass offset is
compensated using the adaptation law. However, the converged
center of mass offset (shown in the top right plot) does not show the
correct results. The resulting center of mass becomes the null space
solution of the matrix �g	�. With persistent excitation (shown in the
bottom plots), the tracking error becomes zero and the center of mass
offset also becomes zero. This shows that the persistent excitation
during the adaptive control of the automaticmass balancing system is
important.

V. Naval Postgraduate School Bifocal Relay
Mirror Spacecraft Simulator

The concept of the BRMS is to redirect laser light from ground-
based, aircraft-based, or spacecraft-based lasers to distant points on
the Earth or in space. The BRMS uses two optically coupled
telescopes. The receiver telescope captures the incoming laser beam
and the transmit telescope directs the beam to the desired target point.
To test and verify control techniques for this fine attitude control
application using a ground-based spacecraft test bed, external
disturbances, including the gravity disturbance, should be
minimized.

The experimental test bed developed at the Naval Postgraduate
School for simulations of the BRMS is shown in Fig. 4. The
spacecraft simulator is supported by a spherical air bearing to allow
rotations about three axes. The ball of the spherical air-bearing
system is 10 in. in diameter and requires approximately 70 psi to float
the approximately 800 kg of the simulator. The z axis of the
spacecraft body is aligned with the direction of the gravity vector
when the spacecraft is maintained at zero attitude. Therefore, the yaw
rotation of the spacecraft simulator is not limited, but the maximum
angular motion in roll and pitch is limited to around 20 deg with the
installed safety bumpers.

Figure 5 shows a schematic of the spacecraft simulator electronics.
A single on-board industrial PC (PC104), equipped with serial,

analog, and digital I/O ports, serves as the main embedded computer
for spacecraft guidance, navigation, and control systems. The on-
board computer wirelessly communicates with the host computer via
transmission control protocol/Internet protocol. Themain simulation
loop is operating at 40 Hz and the xPC TargetTM toolbox of the
Matlab/Simulink® software is extensively used for the real-time
spacecraft bus control. The power switching and control electronics
module shown in Fig. 5 interfaces with various subsystems including
the controlmoment gyroscope (CMG) control system, the optical top
deck gimbal control system, and the automatic mass balancing
control system. The CMG control system includes a dedicated
controller for each inertia wheelmotor and gimbalmotor operating at
1 kHz. The dynamics of the gimbal system is ignored in the
development because the gimbal rate is kept small during the
experiment. For slowmaneuvers, the gimbal angle error stays within

0:004 rad. The gimbal angle error is mainly due to the delay of
0.025 s in the system.

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

Time (sec)

H
s

0 20 40 60 80 100
−2

0

2

4

6

8

10

12

14
x 10

−3

Time (sec)

C
G

 o
ffs

et
 (

m
)

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

Time (sec)

H
s−H

d

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

12
x 10

−3

Time (sec)

C
G

 o
ffs

et
 (

m
)

r
x

r
y

r
z

(H
s
−H

d
)
x

(H
s
−H

d
)
y

(H
s
−H

d
)
z

H
Sx

H
Sy

H
Sz

r
x

r
y

r
z

Fig. 3 Adaptive mass balancing control simulation results.

Fig. 4 NPS bifocal relay mirror spacecraft test bed.
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The automatic mass balancing control system consists of three
linear stages with a dedicated controller for each stage. The linear
stages are aligned such that the three balance masses are translated
parallel to the three axes of the spacecraft body coordinates. Each
linear stage has a maximum travel distance of 15 cm (or 
7:5 cm)
with an accuracy of 18 �m and bidirectional repeatability of

5 �m. The linear encoder of the stage has a resolution of
5:2185 �m. The mass value of the balance masses is 10:89

0:01 Kg including the carriage. The dynamics of themass translation
is also ignored in the development because the rate of the center of
gravity compensation will be sufficiently small.

Serial communication between the power switching and control
electronics and the industrial PC exchanges data from the CMG, top
deck gimbal, and automatic mass balancing control systems. The
inertial measurement unit (IMU700) built by Crossbow Technology
is connected to the second serial port of the on-board computer. The
fiber optics rate gyroscopes in the IMU have in-run bias stability of
<20 deg =h, bandwidth of >100 Hz, and random walk of
<0:4 deg =h1=2. The bandwidth of the current rate gyros integrated
into the IMUunit is large enough to detect vibrations created from the
CMGs. Tominimize the effect of this high frequency noise, low pass
filters are applied to the angular rate signals when the angular
momentum of the spacecraft is determined. The filtered rate data
have a standard deviation of 4:7e � 3 rad=s, 1:2e � 3 rad=s, and
3:7e � 3 rad=s in the x, y, and z axes, respectively. The analog I/O of
the on-board computer also interfaces two inclinometers (roll, pitch),
a 2-axis (infrared) sun sensor, and a 3-axis magnetometer. The
spacecraft attitude is determined by the direct integration of the
kinematic equation using the IMU rate data. A star tracker with a
better attitude estimation algorithm is currently being developed.

The spacecraft bus also employs three flexible structure simulators
consisting of a rotational mass connected through a torsional spring.
The flexible structure simulators provide disturbance torques due to
the excitation of the flexible body of the spacecraft. The flexible
masses are detached from the simulator to minimize the deformation
of the structures and to be consistent with the spacecraft equation of
motion used for the development of the automatic mass balancing

method. Currently, three single gimbal CMGs serve as primary
actuators for the spacecraft simulator. The angular momentum of
each CMG is rated at 22:5 N �m � s for 2500 rpm. For experiments,
the inertia wheel of the CMG is rotating at a constant speed of
200 rad=s. For the BRMS, CMGs are the preferred actuation devices
due to the rapid target acquisition requirement and the fine tracking
and pointing requirements. The geometric configuration of the CMG
array determines the characteristics of the momentum space for the
spacecraft control. The current CMG array configuration, shown in
Fig. 6, is a pyramid-type configuration with the absence of the fourth
CMG. The skew angle denoted as � in Fig. 6 can be adjusted in the
spacecraft simulator to reconfigure themomentum space. The torque
from the CMG array becomes the time derivative of the total CMG

momentum _h, which can be written in matrix form as

_h� A _� (41)

A�HCMG

� cos� cos �1 sin �2 cos� cos �3
� sin �1 � cos� cos �2 sin �3

sin� cos �1 sin� cos �2 sin� cos �3

2
4

3
5 (42)

whereHCMG is the constant magnitude of the angular momentum of
eachCMGand �i is the gimbal angle of the ithCMG(i� 1, 2, 3). The

Fig. 5 Schematics of the spacecraft simulator electronics.

Fig. 6 CMG array configuration of the BRMS simulator.
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CMG steering law is a simple inversion of the matrix A such that

_�� A�1 _h (43)

The CMG steering law will suffer from a singularity problem when
the matrix A is ill conditioned. For experimental verification of the
automaticmass balancingmethods, it is desirable to avoid singularity
states without introducing error in the torque generated from the
CMG array. Therefore, the CMG array is configured to have the
largest singularity-free momentum volume by adjusting the skew
angles of the CMGs. When the skew angle is adjusted to 90 deg, the
CMG array provides a singularity-free momentum sphere with the
radius of HCMG. The experiment is performed such that the total
momentum from the CMG array stays in this singularity-free
momentum sphere.

VI. Automatic Mass Balancing Experiments

Before performing mass balancing experiments, all the compo-
nents on the spacecraft simulator are secured in place to prevent any
mass shift during experiments. It is also important to balance any
rotational elements on the spacecraft simulator. The CMGs are the
main rotating elements of our simulator. To balance the CMGs about
their gimbal axes, a laser source is installed on the spacecraft
simulator. The impact position of the laser beam is recorded from

about 17 m away from the simulator. Then, the mass balancing of
eachCMG ismanually performed using the lead foil tape to achieve a
consistent impact position of the laser beam for any gimbal angle
when the spacecraft simulator is at the equilibrium state. This CMG
balancing process typically takes a very long time. Any unbalance of
CMGs will remain as a dynamic unbalance during the experiments.

A batch estimation technique for compensation of the center of
gravity offset is first considered for the automatic mass balancing. A
sinusoidal reference trajectory is generated and quaternion feedback
control is implemented for following the trajectory. The center of
gravity is initially located below the center of rotationwhich provides
a stable equilibrium point. With the lower center of gravity position,
the center of gravity offset in the x and y axes can be reasonably
balancedmanually tominimize themomentum buildup and eventual
saturation of the singularity-free momentum space during excitation.
Figure 7 shows themeasured spacecraft angular rate, Euler angles (2-
3-1 rotation sequence), and CMG gimbal angles. The recorded
angular rate, attitude, and gimbal angles are used for the batch
estimation of the system inertia matrix and the simulator mass times
the center of gravity vector discussed in Sec. III. The resulting values
from the experiment are

J�
130:34 3:01 10:52
3:02 174:64 �0:40
10:52 �0:40 181:23

2
4

3
5; mr�

0:00196
0:00481
0:19695

2
4

3
5 (44)
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Fig. 10 Spacecraft trajectories and gimbal angles during automatic mass balancing.
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Next, the estimated mass multiplied by the center of gravity vector is
used to directly compensate for the center of gravity offset using
Eq. (17). The required distance of the balance masses for center of
gravity offset compensation becomes

�d� ��0:00018 �0:00044 �0:01809 �Tm

Figure 8 shows the plot of the singularity surface and the
momentum envelope of the spacecraft simulator using lattice points.
Each lattice point represents the momentum state where the
corresponding gimbal angle set results in a singular Amatrix shown
in Eq. (42). The singularity plot has a doughnutlike hole on the y–z
plane and a ring on the x–z plane. The momentum magnitude of the
plot is normalized by HCMG (1HCMG � 16:6 N �m � s) and thus the
spacecraft has a singularity-free momentum space with at least
1HCMG in magnitude in any direction from the origin.

Figure 8 also shows the momentum trajectories of the CMG array
for 50 s during which the spacecraft simulator is commanded to
maintain four different attitudes. The totalmomentum from theCMG
array at the initial time is zero and the spacecraft is oriented to the
desired attitude initially to minimize the transient maneuver time.
When there are no external disturbances, the momentum trajectories
should be constant once the spacecraft reaches the steady state.
Without compensation of the center of gravity offset, the gravi-
tational disturbance forces the CMG array to accumulate momentum

and eventually saturate the available momentum space of the
spacecraft. The gravitational disturbance is determined by the rate of
change of the total momentum magnitude of the CMG. In Fig. 8,
�jhj=�t represents the average rate of change of the total
momentum magnitude once the spacecraft has reached the steady
state, which can represent the constant gravitational disturbance
torque due to unbalance. The resulting gravitational disturbance
shown in Fig. 8 is quite large and quickly saturates the usable
momentum space.

Figure 9 shows the momentum trajectories of four different
attitudes for 2min after the balancemasses are translated by�d. The
gravitational disturbance is reduced, which can be seen after
comparing the new results to the four different attitude values
of �jhj=�t in Fig. 8. As shown in [24] with an approximately
200-kg spacecraft simulator, a good manual balancing can
reduce the gravitational disturbance torque on the order of
magnitude of 0:01 N �m. Although the mass of the NPS simulator
(about 650 kg without flexible structure simulators) is heavier, the
results with a single estimation do not provide balancing results
comparable to a good manual balancing described in [24]. With the
initially unbalanced simulator, obtaining good excitation without
saturation of the available momentum space is difficult. The
estimates of the unbalance vary considerably for each run with
different excitation maneuvers, so achieving good excitation is a
crucial element for obtaining accurate batch estimation results.
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In fact, Fig. 9 represents the best results selected from more than 10
different runs. Applying different estimation algorithms such as
filtering and energy balance methods also results in different
estimation values. In addition, there are other sources of error
including the sensor noise, the misalignment of the balance-mass
translation stages, the incorrect measure of the balance masses, and
the error in the balance-mass positions. Consequently, repeated
estimation is necessary to achieve good balancing results with the
batch estimation methods. The verification of the balancing results is
also a time-consuming process with the batch estimation. In most
cases, the limitation of the simulator rotation in the x and the y axes
prohibits the inspection of pendulum frequencies. Therefore,
gravitational disturbance is either measured at different attitudes of
the spacecraft (such as shown in Fig. 9) or indirectly determined by
observing the spacecraft trajectory errors resulting from the
unbalance during the specified maneuver.

The next experiment is the proposed adaptive control method.
Figure 10 shows the actual spacecraft trajectories as well as the
gimbal angles of the CMGs during the adaptive mass balancing
experiment. Smooth sinusoidal spacecraft angular trajectories are
designed and the corresponding desired momentum trajectories and
feedforward control commands are used in the control law. Figure 11
shows the desired and actual spacecraft angular momentum
trajectories and momentum trajectory tracking errors. Based on the
adaptation law in Eq. (39), the actuation of the balance masses is
based on these tracking errors. Theoretically, tracking errors become
zero when there are no external disturbances. The momentum
tracking errors are noisy when the angular rate measurements are
noisy. Therefore, rate sensor noise directly affects the accuracy of the
mass balancing. Figure 11 reflects the angular momentum errors
using the filtered angular rate signal.

The spacecraft simulator has about 
15 deg of rotational
freedom in the x and the y axes. Accordingly, the angle between the
z axis and the gravity vector is within 
15 deg. The gravitational

disturbance due to the z-axis unbalance becomes much smaller than
the x- and y-axes unbalance because the magnitude of the cross
product is small for a small angle between two vectors. Therefore, the
correction of the z-axis unbalance will be much slower than the
correction of x- and y-axis unbalance. For the faster convergence,
the adaptation gain for the z axis is set to 10 times larger than the
gains in the x and y axes during experiments. Because the higher
adaptation gain tends to amplify the effect of the sensor noise, very
high adaptation gain cannot be used. Another way to enhance the
convergence rate is to use a small feedback gain in the control law
shown in Eq. (37). With the small feedback gain, the momentum
trajectory tracking errors will represent external disturbances more
faithfully. However, the spacecraft simulator needs to closely follow
the desired momentum trajectory during the balancing process in
order to maintain stability and maintain the attitude within the
rotational limits of the simulator. Therefore, it is difficult to speed up
the convergence rate. In Fig. 11, momentum errors slowly decrease
during the 10 min run. The positions of the balance masses shown in
Fig. 12 also indicate that the balance masses would continue to
converge even after 10 min. Because of the bias of the rate gyros, the
spacecraft attitude becomes inaccurate after the long period of
experimentation. The corresponding gravity vector measurement
also becomes inaccurate and it begins to affect the computation of the
adaptation rule. Therefore, the balancing process needs to be
restarted. There is also a limit on the amount of on-boardmemory for
data capturing.

Figure 13 show the positions of the balance masses with the new
initial mass positions of d0 � ��0:15; 0:1;�2:5�T cm. The balance
masses are unable to settle to the constant values suggesting that there
are disturbance elements other than the static unbalance. The
magnitudes of the negative peak to the positive peak are about 0.1 cm
for the x and z axes and slightly less for the y axis. Because
0.1 cm actuation of the balance mass can create a maximum gravity
torque of about 0:1 N �m, the residual disturbances are quite large.
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Using a smaller adaptation gain may eliminate peaks, but it will also
result in a premature stop of the center of gravity compensation. The
balancing procedure is usually started from the lower center of
gravity location, and a premature stop will result in a pendulum
motion at the end of the balancing. During the experiment, the
balancing maneuver is kept slow and the relatively high adaptation
gain is used for faster convergence. Therefore, the resulting positions
of the balancing masses somewhat represent the effort of the residual
disturbance compensation.

Figure 14 shows the corresponding angular momentum tracking
errors. The peaks of the momentum errors in the x and y axes seem to
occur when the spacecraft has reached its maximum or minimum
attitude. This suggests that the center of gravity shift due to the
structure sagging is a main source of error. The effect of the structure
sagging can beminimized by performing a calibration and sensitivity
test, which determines the relationship between the simulator tilt and
the center of gravity shift. We leave this test as a future work in this
paper. The other sources of error, such as environmental torques, are
difficult to verify with the given noisy momentum tracking errors.

To verify the balancing results using the adaptive control method,
gravitational disturbance torques at four different attitudes are
computed again in Fig. 15. For the balance-mass positions, the mean
values of the second half of the experiment in Fig. 13 are used. The
gravitational disturbances shown in Figs. 8, 9, and 15 are also
summarized in Table 1.

From Table 1, the batch estimation method and the proposed
adaptive balancing method with the account of static unbalance only
show improved but limited balancing performance in the experi-
ment. The results suggest that the consideration of dynamic
balancing is inevitable for our spacecraft simulator. To correct
dynamic unbalance, the balancing masses need to be actuated during
the spacecraft maneuver. However, actuating balance masses during
spacecraft simulation will alter the dynamics of a spacecraft, and the
control interaction with the spacecraft attitude control system should
be carefully considered.

VII. Conclusions

In this paper, a method of compensating for the center of gravity
offset with an automatic mass balancing system is investigated. The
direct compensation of the center of gravity resulting from the least-
squares batch estimation is first considered. Then, the adaptive
control method for automatic mass balancing is proposed for online
compensation of the center of gravity offset. With the proposed
method, sufficient excitation of the spacecraft simulator will
guarantee the correct compensation of the center of gravity offset in
the simulation. For verification of the proposedmethod, experiments
are performedwith the three-axis rotational spacecraft simulator. It is
shown with the experiments that the adaptive scheme with online
compensation of the center of gravity can be, with some difficulty,
implemented on the spacecraft simulator. The experimental results
show that the gravitational disturbance is reduced after applying the
automatic mass balancing. Because the dynamic unbalance was not
considered in this development, the balancing results show limited
performance in the actual experiment.
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