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Attitude Dynamics/Control of Dual-Body Spacecraft
with Variable-Speed Control Moment Gyros

Marcello Romano and Brij N. Agrawal
Naval Postgraduate School, Monterey, California 93943

The dynamics equations of a spacecraft consisting of two bodies mutually rotating around a common gimbal
axis are derived by the use of the Newton–Euler approach. One of the bodies contains a cluster of single-gimbal
variable-speed control moment gyros. The equations include all of the inertia terms and are written in a general
form, valid for any cluster configurations and any number of actuators in the cluster. A guidance algorithm has
been developed under the assumtion that the two bodies of the spacecraft are optically coupled telescopes that relay
laser signals. The reference maneuver is found by the imposition of the connectivity between the source and the
target on the ground. A new nonlinear control law is designed for the spacecraft attitude and joint rotation by the
use of Lyapunov’s direct method. An acceleration-based steering law is used for the variable-speed control moment
gyros. The analytical results are tested by numerical simulations conducted for both regulation and tracking cases.

I. Introduction

T HE dynamics and control of multibody spacecraft are a chal-
lenging problem because of the complexity of the dynamics

equations and the time-varying inertia of the system. The prob-
lem becomes even more interesting when gimbaled momentum ex-
change devices are considered to control attitude.

Control moment gyros (CMGs) are unique among attitude control
actuators because they can provide high output torque without using
expendable fuels and can provide a level of precision and continu-
ity unachievable with jet thrusters. Indeed, CMGs have been used
for decades on space stations and on military spacecraft when fast
slewing capability and high pointing accuracy were required. The
use of CMGs is also currently under consideration for several future
civil spacecraft requiring high agility (as in Refs. 1 and 2).

A main drawback to the use of CMGs is the presence of singular
gimbal-angle configurations at which the CMG cluster is unable to
produce the required torque, or, in some cases, any torque at all.3−5

Many previous studies have considered the problem of the dy-
namics and control of spacecraft by the use of single-gimbal CMGs.
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In particular, Oh and Vadali6 report the complete equation of mo-
tions for the case of a single-body spacecraft and also consider the
CMG’s transverse and gimbal inertia; moreover, they introduce a
nonlinear feedback control law and a singularity robust steering
law. Schaub et al.7 and Ford and Hall8 propose the use of variable-
speed CMGs (VS-CMGs), which add extra degrees of control to the
classical CMG devices and may overcome the gimbal-angle singu-
larities while maintaining the output torque equal to the requested
one. Yoon and Tsiotras9 consider the use of VS-CMGs for an inte-
grated power/attitude control system.

In the present paper, the use of VS-CMGs is analyzed for a space-
craft consisting of two rigid bodies that can mutually rotate around a
common gimbal axis. This high-level model represents the bifocal
relay mirror spacecraft, which is under investigation at the Naval
Postgraduate School and other institutions. The main mission of the
bifocal relay mirror spacecraft, which consists of two mechanically
and optically coupled telescopes, is to redirect a laser signal from
ground-based sources to distant points on the Earth or in space.
The receiver telescope captures the incoming energy from the laser
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source, whereas the transmitter telescope directs the laser beam at
the target.

Previous analytical–numerical studies on the bifocal relay mir-
ror project have been conducted with the objective of performing
preliminary simulations of the dynamics and control of the over-
all spacecraft with reaction wheels (RWs)10 and the inclusion of
a model of the optical subsystem.11 A parallel research effort in
progress intends to validate the analytical–numerical results through
experiments on the ground.12,13

The main contributions of the research presented in this paper are
as follows:

1) A dynamic model is provided that takes into account all of
the inertia terms for a dual-body spacecraft with a generic number
of single-gimbal VS-CMGs in a generic cluster configuration. The
equations of motion are factorized in a way that facilitates the design
of the control law.

2) A guidance algorithm is used to compute the reference space-
craft attitude and joint motion by geometric imposition of the re-
laying of optical signals through the spacecraft between two distant
points on Earth.

3) A new, nonlinear feedback control law is designed and tested
by numerical simulations for both tracking and regulation cases.

Section II of the paper presents the analytical model and develops
the system’s equations of motion. Section III outlines the guidance
algorithm. Section IV introduces the control laws. Finally, the sim-
ulation results are reported in Sec. V.

II. Analytical Model of the System Dynamics
In this section, we derive the equations of motion, with the Euler–

Newton method, for a dual-body spacecraft containing a cluster of
VS-CMGs. The approach is based on the work in Refs. 6–8 and
14 for the theory of vectrices. (A vectrix associated to a reference
frame is defined in Ref. 14 as a column matrix, whose elements are
a set of basis vectors for that frame.)

A. Rigid Body with One VS-CMG
Let us consider first a system of a rigid-body spacecraft B and

one single-gimbal VS-CMG W , as in Fig. 1a. The system is free to
move with respect to an inertial frame with vectrix Fi .

A frame with vectrix Fb is fixed with the spacecraft body, and
a frame with vectrix Fg =� [as ag at ]

T is fixed with the gimbal of
the VS-CMG. Here, as is the unit vector directed as the rotor spin
axis, ag is directed as the gimbal rotation axis, and at = as × ag is
directed as the torque produced by the VS-CMG.

First, the vectorial equations of rotational motion are found. The
angular momentum of the overall system with respect to its center
of mass O is given by the sum of the absolute angular momentum
hb of the spacecraft body with respect to O , the absolute angular
momentum hw of the VS-CMG with respect to its center of mass
Ow , and the term of parallel transport from Ow to O

hO = hb + hw + mw

(
r 2
w1 − rwrw

) · ω (1)

where hb = J
b
·ω and 1 is the unit dyadic. The term ω is the an-

gular velocity of the rigid-body frame with respect to the inertial
frame, J

b
is the dyadic of inertia of the body with respect to O and

rw = Ow − O . Absolute angular momentum hw can be expressed as
the sum of the contributions of the gimbal and the rotor

hw = hr + hg (2)

where hr = J
r
·ωr and hg = J

g
·ωg . The terms ωr and ωg are, re-

spectively, the absolute angular velocity of the VS-CMG rotor and
gimbal, and J

r
and J

g
are the inertia dyadics. Introduction of the

relative angular velocities of the gimbal with respect to the body,
ωgb, and of the rotor with respect to the gimbal, ωrg, yields

hr = J
r
· (ω + ωgb + ωrg), hg = J

g
· (ω + ωgb) (3)

The center of mass of the gimbal and rotor is assumed to coincide
with the center of mass of the overall VS-CMG; as a consequence,

a) Spacecraft with a single-gimbal VS-CMG

b) Bifocal relay mirror spacecraft

Fig. 1 Models used in the derivation of the equations of motion.

the center of mass of the overall spacecraft does not change during
the motion of the VS-CMG around its gimbal.

In summary, Eq. (1) can be expressed as

hO = hB + hr + hg (4)

where hB = J
B

·ω is the total absolute angular momentum of the
spacecraft, which is a combination of the contribution of the space-
craft’s body inertia J

b
and the inertia because the VS-CMG is not

located at the spacecraft’s center of mass.
The vectorial equation of motion for the overall spacecraft is

ḣO = te (5)

where the time derivative is in the inertial frame and te is the resultant
vector of external torques.

The vectorial equations of motion of the VS-CMG rotor alone
and of the overall VS-CMG (rotor plus gimbal) are

ḣr = ur , ḣr + ḣg = ug (6)

where ur is the total external torque acting on the VS-CMG rotor,
including the control torque by the spin motor, directed as as , and
where ug is the external torque acting on the VS-CMG, including
the control torque by the gimbal motor, directed as ag .

To obtain the scalar equations of motion, each vectorial quan-
tity is expressed in terms of its components with respect to
a chosen reference frame. Using the vectrix notation, we can
write
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[hO hB hr hg hw rw ω]

= Fb · [hO hB hr hg hw rw ω]

[ωgb ωrg] = Fg · [ωgb ωrg]

Jb = Fb · J
b
· FT

b , JB = Fb · J
B

· FT
b

Jr = Fg · J
r
· FT

g , Jg = Fg · J
g
· FT

g (7)

where hO ∈ R
3 × 1 is the column matrix of the components of the

vector hO along Fb and Jb ∈ R
3 × 3 is the tensor of the moments of

inertia, obtained by expression of the dyadic J
b

along Fb, analo-
gously for the other symbols.

By the introduction of relations (7) into the equation hB = J
B

·ω
and into Eq. (3) by multiplication on the left by Fb and by the
use of the properties of the vectrix operator, the following scalar
expressions are obtained:

hB = JBω = ω
[
Jb + mw

(
r 2
w1 − rwrT

w

)]

hr = CbgJr Cgbω + CbgJr (ωgb + ωrg)

hg = CbgJgCgbω + CbgJgωgb (8)

where Cbg is the rotation matrix from Fg to Fb.
Let us now define the following relations:

µ1 =� [1 0 0]T , µ2 =� [0 1 0]T

ωrg =� µ1�, ωgb =� µ2δ̇

Cbg =� [as ag at ], Cgb = CT
bg (9)

with � being the spin angular speed of the VS-CMG rotor with
respect to the gimbal and δ̇ being the angular speed of the overall
VS-CMG with respect to the spacecraft body, around the gimbal
axis ag . Moreover, as is the column matrix of components along Fb

of the basis vector as , that is, as = Fb · as , analogously for ag and at .
Inserting relations (8) into Eq. (4) and defining J(r + g) =� Jr + Jg as
the inertia matrix of the overall VS-CMG, rotor and gimbal, along
Fg , we have

hO = JBω+ (
CbgJ(r + g)Cgbω+CbgJ(r + g)µ2δ̇ +CbgJrµ1�

)
(10)

Where the term in parentheses on the right-hand side is hw , express-
ing in Fb the absolute angular momentum of the overall VS-CMG.

Now, the scalar form of vectorial Eqs. (5) and (6), with reference
of the terms to Fb, becomes

ḣO + ω×hO = te (11)

ḣr + ω×hr = ur (12)

ḣr + ḣg + ω×(hr + hg) = ug (13)

where the time derivatives are evaluated in Fb and superscript × in-
dicates the matrix form of the vector product. Inserting Eq. (10)
into Eq. (11), and taking into account that Ċbg = Cbgω

×
gb, and

Ċgb = −ω×
gbCgb, we find the equations of motion of the overall space-

craft with respect to the body frame with vectrix Fb. It is convenient
to write the equations in the following way, through the collection
of the terms by factors of δ̇, δ̈, �̇ and �. Indeed, these variables can
be directly measured and acted on at the VS-CMG level:

J1ω̇ = [J1ω]×ω − A1 δ̇2 − B1δ̈ − (D11 + D12 + D13)δ̇

− E1�̇ − F1� + te (14)

where we defined

J1 ∈ R
3 × 3 =� JB + CbgJ(r + g)Cgb

A1 ∈ R
3 × 1 =� Cbg µ

×
2 J(r + g) µ2 = −at I 12

(r + g) + as I 23
(r + g)

B1 ∈ R
3 × 1 =� CbgJ(r + g)µ2 = as I 12

(r + g) + ag I 22
(r + g) + at I 23

(r + g)

D11 ∈ R
3 × 1 =�

(
Cbgµ

×
2 Jrµ1

)
� = (−at I 11

r + as I 13
r

)
�

D12 ∈ R
3 × 1 =� − B×

1 ω

D13 ∈ R
3 × 1 =�

(
Cbgµ

×
2 J(r + g)Cgb − CbgJ(r + g)µ

×
2 Cgb

)
ω

= [(
C̄J(r + g)Cgb

) + (
C̄J(r + g)Cgb

)T ]
ω

E1 ∈ R
3 × 1 =� Cbg Jrµ1 = as I 11

r + ag I 12
r + at I 13

r

F1 ∈ R
3 × 1 =� − E×

1 ω (15)

where C̄ =� [−at 0 as] and I i j
(r + g) and I i j

r indicate the elements
(i, j) of the inertia matrices J(r + g) and Jr . All of the matrices just
defined depend, in general, on the gimbal position δ because both
as and at depend on δ. In particular, the magnitude of D11 is the gain
of the torque amplification effect of the VS-CMG, and it usually
becomes much larger than the other factors when the VS-CMG is
moved around its gimbal.

The matrix factors B×
1 in D12 and E×

1 in F1 are antisymmetric
by definition of the operator superscript ×. The matrix factor of
ω in D13 is symmetric because it is the sum of a matrix with its
transpose, but its sign is, in general, indefinite. These statements are
of interest in relation to control law design. The term depending on
δ̇2 in Eq. (14) does not appear in the equations of Ref. 6; however,
the matrix factor A1 is, in general, not null.

The equations of the motion of the rotor around the spin axis as
and of the overall VS-CMG around the gimbal axis ag are obtained
by the projection of Eqs. (12) and (13) along those two axes

I 11
r

(
�̇ + aT

s ω̇
) + I 12

r

(
δ̈ + aT

g ω̇
) + I 13

r

(
�δ̇ + aT

t ω̇
) + I 23

r δ̇2

+ aT
s

{−[(CbgJr Cgb)ω]×ω + (Dr12 + Dr13)δ̇ + F1�
} = aT

s ur

I 22
(r + g)

(
δ̈ + aT

g ω̇
) + I 12

(r + g)a
T
s ω̇ + I 23

(r + g)a
T
t ω̇ + I 12

r �̇

+ aT
g

{−[(
CbgJ(r + g)Cgb

)
ω
]×

ω+ (D12 + D13)δ̇ + F1�
}= aT

g ug

(16)

where Dr12 and Dr13 are obtained from the D12 and D13 defined in
Eqs. (15) when J(r + g) is replaced with Jr .

B. Rigid Body with N VS-CMGs
In this section, the preceding analytical model is extended to

the case of a rigid-body spacecraft with N VS-CMGs in a generic
configuration. Start from Eqs. (10) and sum the contribution of each
VS-CMG; then the total angular momentum becomes

hO = JB Nω +
N∑

i = 1

(
Cbg i J(r + g)i CT

bg iω

+ Cbg i J(r + g)iµ2δ̇i + Cbg i Jriµ1�i

)
(17)

where it has been defined

JB N =� Jb +
N∑

i = 1

mwi

(
r 2
wi 1 − rwi rT

wi

)
(18)

By insertion of hO given by Eq. (17) into Eq. (11), the equations of
the motion of the overall spacecraft with N VS-CMGs, written in a
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compact form, become

JN ω̇ = [JNω]×ω − A∆̇
2 − B∆̈ − (D1 + D2 + D3)∆̇

− EΩ̇ − FΩ + te (19)

where we defined

JN ∈ R
3 × 3 =� JB N +

N∑

i = 1

Cbg i J(r + g)i Cgb i

A ∈ R
3 × N =� [A1 · · · AN ]

∆̇
2 ∈ R

N × 1 =�
[
δ̇2

1 · · · δ̇2
N

]T

∆ ∈ R
N × 1 =� [δ1 · · · δN ]T

B ∈ R
3 × N =� [B1 · · · BN ]

Di ∈ R
3 × N =� [D1i · · · DNi ], i = 1, 2, 3

E ∈ R
3 × N =� [E1 · · · EN ]

� ∈ R
N × 1 =� [�1 · · · �N ]T

F ∈ R
3 × N =� [F1 · · · FN ] (20)

and the definitions in Eqs. (15) are used to obtain the elements of
the matrices A, B, D, E, and F, along with the specific values of
Cbg, J(r + g), and Jr for each VS-CMG.

Equations (16) still apply for each one of the N VS-CMGs.

C. Dual-Body Spacecraft with N VS-CMGs
Finally, in this section, we develop the equations of motion of a

dual-body spacecraft with N VS-CMGs, as represented in Fig. 1b.
The bodies C and D, in this conceptual model, represent the trans-
mitter and the receiver telescopes of a spacecraft for the relay of
optical signals. The receiver telescope rotates with respect to the
transmitter around an axis that contains, as a design hypothesis, the
center of mass of the receiver telescope itself; therefore, the center
of mass of the overall system does not change during the relative ro-
tation. In Fig. 1b, points Oc, Od , and O are, respectively, the center
of mass of the transmitter telescope, the receiver telescope, and the
overall spacecraft. A frame with vectrix Fc is fixed with respect to
the transmitter telescope: Here, c1 is the optical axis of the telescope
and c2 is parallel to the rotation axis between the two telescopes. A
frame with vectrix Fd is fixed with respect to the receiver telescope:
In this case, d1 is the optical axis of the receiver telescope and d2
is the relative rotation axis. Fd is rotated with respect to Fc of an
angle β around d2. Finally, Fb is parallel to Fc, but centered in the
center of mass of the overall spacecraft. The transmitter telescope
is supposed to contain N single-gimbal VS-CMGs, not shown in
Fig. 1b.

In summary, our dynamic model has a total of (2N + 7) degrees
of freedom (DOF): three DOF for the position of the center of mass
of the system, three DOF for the attitude of the transmitter telescope,
one DOF for the relative angular displacement of the telescopes, and
two DOF for the gimbal and rotor position of each VS-CMG.

To write the equations of motion for this system, we add the
contribution of the steerable receiver telescope to the angular mo-
mentum of the single-body case. We first write the absolute vectorial
angular momentum of the receiver telescope with respect to Od :

hd = J
d
· ωd = J

d
· (ω + ωdb) (21)

withωd being the absolute angular velocity of the receiver telescope,
J

d
the inertia dyadic of the receiver telescope with respect to its

center of mass, and ωdb the relative angular velocity of the receiver
telescope with respect to the transmitter.

The vectorial equation of motion of the receiver telescope alone
is

ḣd = ud (22)

where ud is the total external torque acting on the receiver, including
the control torque exerted by the motor between the two telescopes,
directed as d2.

By the expression of each vector quantity of Eq. (21) with respect
to a suitable reference frame,

hd = Fb · hd , ωdb = Fd · ωdb, Jd = Fd · J
d
· F

T
d (23)

and by the definition of

ωdb =� µ2β̇, Cbd =� [d1 µ2 d3], Cdb = CT
bd (24)

the following expression yields

hd = (Cbd Jd Cdb)ω + Cbd Jdµ2β̇ (25)

The total angular momentum is obtained when hd is appended from
Eq. (25), on the right-hand side of Eq. (17) and also when the
transport inertia terms due to the masses of the two telescopes are
taken into account. By insertion of the total angular momentum into
Eq. (11), the three equations of motion of the overall dual-body
system are found:

Jtotω̇ = [Jtotω]×ω − A∆̇
2 − B∆̈ − (D1 + D2 + D3)∆̇

− EΩ̇ − FΩ + te − Ad β̇
2 − Bd β̈ − (Dd2 + Dd3) β̇ (26)

where Ad , Bd , Dd2, and Dd3 are obtained from the A1, B1, D12, and
D13, defined in Eqs. (15), by the replacement of Cbg with Cbd and
J(r + g) with Jd . In addition to the definitions in Eqs. (20), we define

Jtot ∈ R
3 × 3 =� JN + mc

(
r 2

c 1 − rcrT
c

)

+ md

(
r 2

d 1 − rd rT
d

) + (Cbd Jd Cdb) (27)

where mc and md are, respectively, the mass of the transmitter and of
the receiver telescopes and rc = Fb · Oc − O and rd = Fb · Od − O .

Moreover, the equation of motion of the overall receiver telescope
around the gimbal axis d2 is given by

I 22
d

(
β̈ + µT

2 ω̇
) + I 12

d dT
1 ω̇ + I 23

d dT
3 ω̇

+µT
2

{−[(Cbd Jd Cdb)ω]×ω + (Dd2 + Dd3)β̇
} = ud (28)

where I i j
d indicates the element (i, j) of the inertia matrix Jd and ud ,

aside from the friction, is the torque acting on the receiver telescope
due to the joint motor between the two telescopes. Equations (26)
and (28), along with Eqs. (16) for each VS-CMG, completely de-
scribe the rotational dynamics of our model.

Note that the contribution of the receiver telescope to the equa-
tions of motion is analogous to the contribution of a single-gimbal
CMG with the inertia and mass characteristics of the receiver tele-
scope and fixed rotor.

III. Determination of the Reference Maneuver
This section outlines the determination of the reference attitude

and joint motion for the dual-body spacecraft modeled earlier, given
its orbital parameters and the ground positions of the laser source and
the target, which receiver and transmitter telescopes must simulta-
neously track. The ground laser source is supposed to be cooperative
and track the receiver telescope of the satellite. The computed ref-
erence motion is used, in our simulations, to guide the spacecraft
during the tracking control.

These simplifying hypotheses are considered: Both target and
source are fixed on the Earth’s surface; the Earth is spherical; more-
over, Oc ≡ O ≡ Od (Fig. 1b).
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The following four geometry conditions must be satisfied for the
relay mission:

c1 = (Ltg − O)/|Ltg − O|, d1 = (Lsr − O)/|Lsr − O|
β = arccos(c1 · d1), d2 = (c1 × d1)/|c1 × d1| (29)

Because of the first two conditions, the telescopes optical axes cross
the target and source points (Ltg and Lsr ); the third condition im-
poses that the joint angle be equal to the angular separation between
the target and the source, as seen at the spacecraft location; and the
fourth condition imposes that the rotation axis d2 between the two
telescopes be perpendicular to the plane defined by the locations of
the spacecraft, the target point, and the source point.

The following algorithmic steps are conducted to obtain the ref-
erence spacecraft attitude and the joint angle at discrete points along
the relay portion of the spacecraft orbit, that is, the portion of the
orbit at which both the source and the target are visible: 1) Calculate
the position of the source and the target in the Earth celestial frame
(ECF), starting from their known positions in the Earth geographic
frame. 2) Deduce the current position of the spacecraft and the sub-
satellite point in the ECF, starting from the orbital parameters. 3)
Impose the conditions of Eqs. (29). 4) Express the attitude of the
frame with vectrix Fb with respect to the spacecraft celestial frame.

By repeating the preceding algorithm at regular time steps, the
reference sequence of the Euler’s parameters and the joint angle val-
ues is finally obtained. Useful equations to implement this algorithm
can be found in Ref. 15.

IV. Design of the Control Law
This section introduces the feedback control law for large rota-

tional maneuvers of the dual-body spacecraft with N VS-CMGs, as
modeled earlier. The new nonlinear feedback law proposed here is
an extended and improved version of the law proposed in Ref. 6 and
used as a base in Ref. 7. The feedback law is extended to enforce the
regulation of the additional state variable β, which is the angle be-
tween the two telescopes. Moreover, the feedback law is improved
by exploitation of the antisymmetry of some of the matrix factors
of the equations of motion, already discussed in Sec. II.A.

Lyapunov’s direct method is used for the control law design. It is
assumed that estimates of the current state variables of the system
(ω, q, β̇, β, Ω, and ∆) are available in real time, where q are the
Euler’s parameters.

The target state is given by ω f , q f , β̇ f , and β f , with free values
of ∆ and Ω. Let V be the following Lyapunov’s function:

V = kq�qT �q+ 1
2 �ωT Jtot�ω+ 1

2 I 22
d (�β̇)2 + 1

2 kpβ(�β)2 (30)

where kq and kpβ are positive constants and we defined the error
term �q =� (q − q f ), analogously for �ω, �ω̇, �β, �β̇, and �β̈.

The time derivative of V can be written as

V̇ = 2kq�q̇T �q + �ωT Jtot�ω̇ + 1
2 �ωT J̇tot�ω

+ I 22
d �β̇�β̈ + kpβ�β̇�β (31)

Now, let us execute the following steps: 1) The relation between the
Euler’s parameters and the angular velocity (as in Ref. 14)

q̇ = 1
2 Q(q)ω (32)

is substituted into the first term on the right-hand side of Eq. (31).
2) The expression of ω̇ from Eq. (26) is substituted into the second
term of Eq. (31). 3) The time derivative of Jtot, as defined in Eq. (27),
is substituted into the third term of Eq. (31). 4) The expression of β̈
from Eq. (28) is substituted into the fourth term of Eq. (31).

Finally, after some algebraic steps, we have

V̇ = −�ωT
{

kq Q(q)T q f + Jtotω̇ f − [Jtotω]×ω f + A∆̇
2 + B∆̈

+ D∆̇ + EΩ̇ + F f Ω − te + Ad β̇
2 + Bd β̈ + Dd β̇

}

− �β̇
{−kpβ�β + I 22

d

(
β̈ f + µT

2 ω̇
) + I 12

d dT
1 ω̇ + I 23

d dT
3 ω̇

+µT
2

[−[(Cbd Jd Cdb)ω]×ω + (Dd2 + Dd3)β̇
] − ud

}
(33)

where it has been defined

D =� [D1 + D2 f + (D3 + D3 f )/2]

Dd =� [Dd2 f + (Dd3 + Dd3 f )/2] (34)

and the matrices F f , D2 f , D3 f , Dd2 f , and Dd3 f are obtained from the
matrices F, D2, D3, Dd2, and Dd3 defined in Eqs. (20) and (26) by the
replacement of ω with ω f . The antisymmetry of the matrix factor
[Jtotω]× has been exploited in Eq. (33) to replace the term [Jtotω]×ω
with [Jtotω]×ω f . (In fact, [Jtotω]×ω= [Jtotω]×�ω+ [Jtotω]×ω f ,
and �ωT [Jtotω]×�ω= 0.) For the same reason, the terms F, D2,
D3, Dd2, and Dd3 have been replaced with F f , D2 f , D3 f , Dd2 f , and
Dd3 f . These substitutions are advantageous because ω f is perfectly
known, whereasω is, in practice, estimated and affected by bias and
noise. Moreover, the control laws, in case of regulation, becomes
simpler.

Equation (33), when the terms in the braces on the right-hand side
are condensed to {R1} and {R2} for convenience, becomes

V̇ = −�ωT {R1} − �β̇{R2} (35)

For V̇ to be negative semidefinite, it is sufficient that the following
two conditions are satisfied:

{R1} = K�ω, {R2} = kdβ�β̇ (36)

where K is a positive definite gain matrix and kdβ is a positive
constant gain.

Equations (36) can be rearranged when the control terms of the
system are moved to the left-hand sides:

B∆̈ + D∆̇ + EΩ̇ = treq, ud = ud req (37)

with

treq = K�ω − kq Q(q)T q f − Jtotω̇ f + [Jtotω]×ω f − A∆̇
2

− F f Ω + te − Ad β̇
2 − Bd β̈ − Dd β̇

ud req = −kdβ�β̇ − kpβ�β + I 22
d

(
β̈ f + µT

2 ω̇
) + I 12

d dT
1 ω̇ + I 23

d dT
3 ω̇

+µT
2

[−[(Cbd Jd Cdb)ω]×ω + (Dd2 + Dd3)β̇
]

(38)

Table 1 Values of geometric and mass parameters used in simulations

Parameter Value

Jc (transmitter inertia) diag[882, 2997, 3164], kg · m2

Jd (receiver inertia) diag[183, 1721, 1560], kg · m2

mc (transmitter mass) 2267, kg
md (receiver mass) 973, kg
rc (Fb · Oc − O in Fig. 1b) [−0.27, −0.49, 0]T , m
rd (Fb · Od − O in Fig. 1b) [0.63, 1.15, 0]T , m
βp (Fig. 2) 54.74, deg
J(r + g) (VS-CMG total inertia) diag[0.27, 0.135, 0.135], kg · m2

Jr (VS-CMG rotor inertia) diag[0.245, 0.1, 0.1], kg · m2

Fig. 2 Cluster of four single-gimbal CMGs in a pyramid configuration.



518 ROMANO AND AGRAWAL

a) Spacecraft angular velocity

b) Spacecraft attitude (Euler’s parameter)

c) Spacecraft joint angle and torque

d) Actuator spin rates

e) Actuator gimbal rates

f) Actuator gimbal angles

g) Singularity index

h) Required and obtained torque

Fig. 3 Results of case 1 (regulation control); use of VS-CMGs compared to use of CMGs.
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Table 2 Values of control law, steering law, and saturation parameters used in simulations

Parameter Case Value

kq (see Eq. 38) Regulation VS-CMGs/CMGs 35 N · m
Regulation RWs 1.75 N · m
Tracking 104 N · m

K (see Eq. 38) Regulation VS-CMGs/CMGs diag[616, 705, 881] N · m · s
Regulation RWs diag[138, 158, 197] N · m · s
Tracking diag[10417, 11914, 14895] N · m · s

kpβ (see Eq. 38) Regulation 10 N · m
Tracking 103 N · m

kdβ (see Eq. 38) Regulation 262.4 N · m · s
Tracking 2624 N · m · s

kδ̇ (see Eq. 43) Regulation/tracking 50 s−1

wg (see Eq. 44) Regulation/tracking 1.0
ws0 (see Eq. 44) Regulation/tracking 1.0
µ (see Eq. 44) Regulation/tracking 10−2

α0 (see Eq. 45) Regulation/tracking 10−1

|∆̇|max Regulation/tracking 5 · [1, 1, 1, 1]T rad/s
|∆̈|max Regulation/tracking 2 · [1, 1, 1, 1]T rad/s2

|Ω|max Regulation/tracking 628 · [1, 1, 1, 1]T rad/s
|Ω̇|max Regulation/tracking 4 · [1, 1, 1, 1]T rad/s2

Table 3 Values of initial and target conditions used in simulations

Parameter Case Value

Ω0 (rotor rates) VS-CMGs/CMGs 366.5 · [1, 1, 1, 1]T rad/s
RWs [0, 0, 0, 0]T rad/s

∆0 (gimbal angles) Regulation VS-CMGs/CMGs π/4 · [1, −1, −1, 1]T rad
tracking VS-CMGs/CMGs [0, 0, 0, 0]T rad
Regulation/tracking RWs π/2 · [1, 1, 1, 1]T rad

∆̇0 (gimbal rates) Regulation/tracking [0, 0, 0, 0]T rad/s
ω0 (angular velocity) Regulation [0.01, 0.01, −0.01]T rad/s

Tracking [0, 0, 0]T rad/s
q0 (attitude) Regulation [0.31, 0.54, 0.64, 0.46]T

Tracking [0, 0, 0, 1]T

β0 (joint angle) Regulation 0.12 rad
Tracking 0.4037 rad

ω f (reference angle velocity) regulation [0, 0, 0]T rad/s
q f (reference attitude) Regulation [0, 0, 0, 1]T

β f (reference joint angle) Regulation 0 rad

a) Spacecraft angular velocity

b) Spacecraft attitude (Euler’s parameter)

c) RWs spin rates

d) Power consumption

Fig. 4 Results of case 1 (regulation control); use of VS-CMGs compared to use of RWs.
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These are the designed control laws. Because they satisfy Eqs. (37)
and (38), the derivative of the Lyapunov’s function is negative
semidefinite and the target state becomes asymptotically stable (as
demonstrated hereafter) for the closed-loop system.

The second equation of the control laws in Eqs. (37) has a
feedback-linearization effect16 on the closed-loop system. Indeed,
by placement of the torques udreq given by Eq. (38) into the equa-
tion of motion (28), the following equation is obtained for the error
dynamics:

I 22
d �β̈ + kdβ�β̇ + kpβ�β = 0 (39)

This is an unforced second-order system in the error terms. The
constant kdβ can be chosen to be equal to 2

√
(I 22

d kpβ) to guarantee
a critically damped behavior of the error term. The constant kpβ

can be chosen based on the maximum available torque and the set
saturation error. A similar case applies to the first equation of the
control laws (37), which affords a choice of the constant K, as in
Ref. 6.

Interestingly, in the case of regulation control (ω f = 0), the first
equation of Eq. (38) simplify to

treq = Kω − kq Q(q)T q f − A∆̇
2 + te − Ad β̇

2 − Bd β̈ − (Dd3/2)β̇

(40)

A. Demonstration of Asymptotic Stability
V̇ is semidefinite negative in the domain containing the variable

states errors �ω, �q, �β̇, and �β; in fact, V̇ does not depend
explicitly on �q and �β, as in Eq. (35). Then the direct Lyapunov’s
theorem guarantees only the stability of the closed-loop system for
all of the states errors, but not the asymptotic stability.

The global asymptotic stability of the closed-loop system can be
demonstrated practically by showing that the only equilibrium point
for V is at the target state. However, a more formal demonstration
is shown hereafter, as in Ref. 7. In particular, a sufficient condition
for asymptotic stability is that the first higher-order derivative of V ,
which is nonzero in the set Z of states where V̇ is zero, must be of
odd order and be negative definite in Z (Ref. 17). In our case, Z is
the set of zero values for �ω and �β̇ and arbitrary values for �q
and �β, as in Eqs. (35) and (36). The second derivative of V (when
the control law is applied) is still zero in the set Z :

d2V

dt2
= −2�ωT K�ω̇ − 2�β̇kdβ�β̈ (41)

By the use of the time derivative of Eq. (41) and by consideration
of Eqs. (26), (28), and (36), after some algebraic steps, the third
derivative of V in Z is written as

d3V

dt3
= −2k2

q qT
f Q(q)

(
J−1

tot

)T
KJ−1

tot Q(q)T q f − 2kdβ

k2
pβ

I 22
d

(�β)2 (42)

which is negative definite. In fact, Jtot and K are positive-
definite matrices, and kdβ and kpβ are positive constants. Moreover,
qT

f Q(q) = [Q(q)T q f ]T , and this quantity is equal to zero only when
�q = 0. Therefore, the asymptotic stability of the closed-loop sys-
tem is proved.

B. Steering Laws for the VS-CMGs and CMGs
The first control law in Eqs. (37) and (38) does not contain the

physical control torques of the gimbals and rotors explicitly. Only
gimbal and rotor accelerations and gimbal rates appear. To satisfy the
control law, a steering law is typically exploited. From the required
torque, the steering law determines the required value of Ω̇ and the
required value of either ∆̇ (gimbal rate steering law) or ∆̈ (gimbal
acceleration steering law). The rotor and gimbal motors are then
commanded to track these required values.

In our simulations, an acceleration steering law was used. In fact,
this provides more realistic results than the rate steering law because
it takes into account the inertia around the gimbal axes and allows
for the computation of the power consumption.

In particular, for the case of VS-CMGs, we used a modified ver-
sion of the acceleration steering law introduced in Ref. 7, which the
reader is referred to for a detailed explanation. The law is given by

[
Ω̇

∆̈

]
=

[
1 0

0 kδ̇1

]{
WQT (QWQT )−1treq −

[
0

∆̇

]}
(43)

where 1 is the N by N identity matrix, kδ̇ is a positive constant, and

Q ∈ R
3 × 2N =� [E, D]

W ∈ R
2N × 2N =�

[
ws0e−µσ 1 0

0 wg(1 − e−µσ )1

]
(44)

σ =� det(DDT )/(I 11
r �0)

2 being the singularity index, which is zero
at the singular sets of gimbal positions. �0 is the nominal spin rate.
Moreover ws0, wg , and µ are positive constants.

a) Ground track of the orbit

b) Reference attitude motion

c) Reference joint motion

Fig. 5 Case 2: reference motion for the tracking control example.
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a) Angular velocity errors

b) Attitude errors

c) Joint angle error and torque

d) Actuator spin rates

e) Actuator gimbal rates

f) Actuator gimbal angles

g) Singularity index

h) Required and obtained torque

Fig. 6 Results of case 2 (tracking control); use of VS-CMGs compared to use of CMGs.
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W is the weight matrix for the pseudoinverse operation in Eq. (43).
Far from singularity, the factor e−µσ is approximately zero, and it
approaches one near a singularity. Then, when far from singularity,
the required torque is provided by ∆̈ and ∆̇, and when a singular-
ity is approached, the required torque is provided by Ω̇, which is
otherwise close to zero. Therefore, this steering law can effectively
overcome the singularity condition and track the required torque.
The expression of W in Eq. (44) has been modified with respect
to Ref. 7, where the factor of 1 in the second law is constant. This
produced better performances of the steering law in our simulations.

For the case of simulations with CMGs (Ω̇= 0), we used, instead
of Eq. (43), the singularity robust steering law introduced in Ref. 6
and given by

∆̈ = kδ̇1
[
DT

(
DDT + α0e−µσ 1

)−1
treq − ∆̇

]
(45)

where α0 is a positive constant. This steering law provides singu-
larity robustness by modifying the output torque with respect to the
required torque, near singularities. This can have negative effects,
as discussed later.

The steering laws in Eqs. (43) and (45) are local singularity avoid-
ance methods, and they can be ineffective on internal elliptic-type
singularities.4 A global avoidance method should be used to guaran-
tee avoidance of singularities in its working domain (as in Ref. 18).
However, the use of a global method is considered beyond the scope
of the present paper.

V. Simulation Results
The dynamics model, guidance algorithm, control laws and

steering laws, which have already been discussed, were coded in
MATLAB®–Simulink to conduct the numerical simulations. The
simulation code was tested by verification of the conservation of the
angular momentum within the numerical accuracy and by repetition
of the results of Refs. 6 and 7.

a) Angular velocity errors

b) Attitude errors

c) RW spin rates

d) Power consumption

Fig. 7 Results of case 2 (tracking control); use of VS-CMGs compared to use of RWs.

The main objectives of our numerical simulations were 1) to con-
firm the asymptotic stability of the proposed control law, for reg-
ulation and tracking, which has been demonstrated analytically in
the preceding section; 2) to study the performances in the ideal case
of no external disturbances (te = 0) and no uncertainties; and 3) to
assess the performances preliminarily in case of uncertainties in the
knowledge of the system’s inertia.

Moreover, the simulations compared the use of VS-CMGs to the
use of CMGs and RWs.

As a sample case for our simulations, we considered a dual-body
spacecraft, as in Fig. 1b, with mass and geometry data corresponding
to the preliminary design of the bifocal relay mirror spacecraft.11

We considered a cluster of four VS-CMGs in a pyramid configu-
ration mounted on the transmitter-telescope side of the spacecraft.
See Fig. 2, where the vectrix Fw is parallel to Fb of Fig. 1b. In
this configuration of the VS-CMG cluster, the direction cosines ma-
trix Cbgi , defined in Eq. (9), can be conveniently obtained, for each
VS-CMG, as the product of three elementary rotations:

Cbg i = 3C(π/2)i
1C(π/2 + βp)2C(δi ), i = 1, . . . , 4 (46)

where the notation j C(η) indicates the elementary rotation of the
angle η around the j th axis and βp is the base angle of the cluster
pyramid, as in Fig. 2.

The characteristic data of the model used in our simulations are
presented in Table 1. In particular, Jc and Jd are the inertia matrices
of the transmitter and receiver telescopes (Fig. 1b), and mc, md , rc,
and rd are as in Eq. (27).

Two sample cases were considered in our simulations: a regula-
tion control case and a tracking control case. For the bifocal relay
mirror spacecraft, the regulation case is typical of the attitude slew-
ing to acquire the laser source and the target, and the tracking case is
typical of the laser relaying phase. For each of the two control cases,
the use of VS-CMGs has been compared with the use of CMGs and
RWs. For all of the actuators, the same control law was used, with



ROMANO AND AGRAWAL 523

zeroed Ω̇ in the case of CMGs and zeroed ∆̇ for RWs. In the case
of a regulation with RWs, the values of control gains were reduced
to avoid quick saturation.

The used control parameters and the saturation values for the
actuators are listed in Table 2. Finally, Table 3 gives the values of
the initial and target conditions used in the simulations.

The fourth/fifth-order Dormand–Prince algorithm was used for
the numerical integrations, with the relative and absolute tolerance
set at 10−12.

A. Case 1: Regulation Control (Acquisition Mode)
Figures 3 and 4 report the results of the simulations for the regu-

lation case. In particular, the use of VS-CMGs is compared vs the
use of CMGs in Fig. 3 and vs RWs in Fig. 4.

As can be seen in Figs. 3a–3c, the proposed control law is stable
and performs satisfactorily well, both with use of the VS-CMGs and
the CMGs.

Figure 3g shows that a singularity is encountered after around 5 s
of the maneuver. The VS-CMGs perform better than the CMGs in

a) Spacecraft angular velocity (regulation)

b) Angular velocity errors (tracking)

c) Spacecraft attitude (regulation)

d) Attitude errors (tracking)

e) Joint angle errors and torque (regulation)

f) Joint angle errors and torque (tracking)

Fig. 8 Results of simulations with uncertain inertia matrices: a), c), and e), regulation case; b), d), and f), tracking case.

overcoming the singularity. Indeed, the VS-CMGs exploit a varia-
tion of the wheel spin rate of about 20 rad/s, as in Fig. 3d. Therefore,
the singularity is overcome while the total output torque is main-
tained near to that required, as shown in Fig. 3h.

Also, the CMGs can overcome the singularity, thanks to the use
of the singularity robust steering law, but their output torques sig-
nificantly fluctuate near the singularity, causing a corresponding
fluctuation in the gimbal rates, as can be seen in Fig. 3e. These
fluctuations, beyond highly increasing the power consumption, as
illustrated in Fig. 4d, are especially critical for flexible spacecrafts
and jitter-sensitive payloads.

The RWs are much slower than the VS-CMGs and the CMGs
in reaching the commanded attitude, as shown in Figs. 4a and 4b,
because of the smaller available torque. Figure 4c reports the wheels’
rate variations. The behavior of β is very similar to the case of VS-
CMGs and CMGs.

B. Case 2: Tracking Control (Relay Mode)
In this case, simulations are conducted for a sample relay mission

of the bifocal relay mirror spacecraft when laser connectivity is
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established between the laser source and the target. In particular,
the simulation is started at the precise instant when both the target
and the source become visible to the spacecraft.

We considered the target located in Albuquerque, New Mexico,
[−106◦ −37′ longitude, 35◦3′ latitude], and the source located in
Monterey, California, [−121◦ −54′ longitude, 36◦36′ latitude]. In
particular, we considered an orbit passing over the target; indeed,
this is one of the dimensioning cases because it requires a high pitch
rate. The orbit is circular with an altitude of 715 km. Figure 5a gives
the ground track of the orbit. The full line portion indicates the
relay phase between the laser source S and the target T . Figures 5b
and 5c report the reference attitude and joint-angle motion. The
pitch–roll–yaw basis vectors, at the initial condition of the relay
maneuver, have been used as basis vectors of the inertial reference
frame.

Figure 6 shows the results for the use of VS-CMGs in comparison
to CMGs, and Fig. 7 shows the results in case of RWs. In particular,
Figs. 6a–6c, 7a, and 7b report the tracking errors.

A singular configuration is approached, but not reached, at around
420 s, as shown in Fig. 6g. A small variation of spin rates is required
in the case of VS-CMGs, as reported in Fig. 6d. In this case, both
the VS-CMGs and the CMGs provide a torque very near to what is
required, as shown in Fig. 6h.

Also, the RWs perform well in this case. The main advantage of
the use of the VS-CMGs or the CMGs vs the RWs would be in the
considerably smaller energy consumption, as shown in Fig. 7d.

Note that, in the case of VS-CMGs and CMGs, the capability
of good performance near singularities depends on the value of the
spin angular momentum of the actuators. If the value of nominal
angular momentum is reduced, with respect to the aforementioned
cases, the advantage of the use of VS-CMGs vs CMGs becomes
even more evident.

The designed control law does not guarantee any robustness in the
presence of parameter uncertainties or unmodeled dynamics related,
for example, to structural flexibility. To assess the performance of
the controller in the presence of inertia uncertainties, preliminary
simulations were executed for the regulation and tracking cases with
VS-CMGs. The estimated inertia matrices used in the control law
and steering law for these simulations are as follows:

Ĵ′
tot =




2942 −664 298

−664 3903 330

298 330 5727



 , Ĵd =




200 64 179

64 1766 73

179 73 1648





Ĵ(r + g) =




0.278 0.007 0.0024

0.007 0.1469 0.0052

0.0024 0.0052 0.138





Ĵr =




0.2467 0.006 0.0002

0.006 0.112 0.0044

0.0002 0.0044 0.103



 (47)

where Ĵ′
tot includes the estimation of the first three terms on the

right-hand side of Eq. (27). These inertia values correspond to a
relative parameter error of 10%, for the Ĵ′

tot and Ĵd , and of 5%, for
Ĵ(r + g) and Ĵr , with respect to the values computed with the data
in Table 1, which are still used for the truth model of the system
dynamics. [Given a parameter vector θ and its estimation θ̂ , the rela-
tive parameter error is defined in Ref. 19 as 100 · (‖θ − θ̂ ‖/‖θ ‖).]
Figure 8 gives the results of these two simulations. Despite the
uncertainties, the controller still guarantees the stability, as shown
in the results of the regulation case reported in Figs. 8a, 8c, and
8e. However, as possibly expected, the parameter uncertainty neg-
atively affects the tracking performances, as shown in Figs. 8b,
8d, and 8f.

VI. Conclusions
The dynamics equations of the motion have been written for a

spacecraft model consisting of two rigid bodies connected by a

rotational joint: One of the bodies contains a generic number of
variable-speed CMGs in a generic cluster configuration. All of the
inertia terms have been taken in account.

A guidance algorithm has been developed by consideration of
the two bodies of the spacecraft as being optically coupled tele-
scopes and the imposition of the optical connectivity, through the
spacecraft, between two distant points on Earth.

A new nonlinear control law, based on Lyapunov’s direct method,
has been introduced to command the spacecraft attitude and joint
displacement. A modified version of an existing acceleration-based
steering law has been used.

The results obtained in the simulations with four actuators in a
pyramid configuration show that the feedback law performs well,
in both the regulation and the tracking control. VS-CMGs perform
better than CMGs near singularity configurations. In fact, the out-
put torques of CMGs fluctuate near a singularity, as an effect of
the singularity robust steering law, causing a corresponding fluc-
tuation in the gimbal rates. These fluctuations would be critical
for flexible spacecraft and jitter-sensitive payloads. In the case
of regulation control, the VS-CMGs and CMGs outperform the
RWs, as expected. On the contrary, with regard to tracking con-
trol, with small initial errors, the performance of all three kinds
of actuators are comparable, except that the RWs consume greater
energy.

The proposed control law is robust against uncertainties in the
knowledge of the inertia terms, as our simulations preliminarily
assessed.
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