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In this paper, experimental verifications of various jerk-limited control designs are pre-
sented. The focus is on a large slew maneuver of a flexible spacecraft where the fast and
accurate pointing is required at the end of the maneuver. Various control profiles are
investigated including input shaping and jerk-limited optimal control profiles, especially
to account the effect of jerk in the control profile. The control design is verified by the
experiment using the Flexible Spacecraft Simulator (FSS).

I. Introduction

Space structures employing vibration-sensitive payload require stringent spacecraft attitude control. Ex-
amples may include imaging payloads with rotating or scanning instruments that have high-accuracy point-
ing and jitter requirements. Control systems are needed that can suppress spacecraft structural vibrations.
When the structure is light and flexible, spacecraft with agile maneuver requirements need special attention.
Because of the very small structural damping, it is necessary to minimize the excitation of the flexible modes
during the large slew maneuver. Application of the time-optimal design of the rigid body spacecraft to the
flexible spacecraft will result in a large excitation of these flexible modes. It is recommended that smoothed
feedforward control profiles and trajectory tracking can significantly reduce the maneuver time and settling
time.1 The smooth control profile will eliminate the infinite jerk from each step of the time-optimal bang-
bang control. However, smoothing of the control profile cannot completely eliminate the vibration. For
a complete cancellation of the vibration, the input shaping technique3 has been successfully adopted and
tested with the experimental testbed for rest-to-rest maneuvers.6 Input shaping can be used in conjunction
with any reference input. When time-optimal bang-bang control is used as a reference control input, the
resulting control will completely eliminate the targeted frequency vibration mode. However, the resulting
shaped control profile will still have infinite jerk which may result in excitation of the unmodelled dynamics
of the system. Therefore, a smooth reference control profile is still preferable for input shaping. The shaped
control profile is no longer time-optimal since the final time has been increased by the half period of the each
targeted frequency. For systems with multiple frequency modes (especially low frequency modes), sequen-
tial application of the input shapers unnecessarily reduce the control amplitude and increase the final time
significantly. This fact can be overcome by including the flexible dynamics of the system into the spacecraft
model. Then the time-optimal control profile including the flexible modes can be found. Since the resulting
time-optimal control is still a bang-bang type with increased switch times, the jerk-limited time-optimal
control has been also proposed.4 The infinite jerk profile of the step is modified with the ramp input with
a constrained maximum jerk value. This method is advantages over the sequential input shaping method
in reducing the final time, however, problem solving requires numerical or parameter optimization once the
flexible dynamics are included in the model.

In this paper, various aforementioned control profiles are derived for actual implementation on the ex-
perimental testbed. The detailed procedure of deriving the various control profiles is also presented. Ex-
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perimental results are also presented to exemplify and test various jerk limited control methods, using the
Flexible Spacecraft Simulator (FSS) developed at the Naval Postgraduate School.

II. Overview of Flexible Spacecraft Simulator

Figure 1. Flexible Spacecraft Simulator (FSS)

The Flexible Spacecraft Simulator (FSS) is designed to study the effect of various control schemes for
effective elimination of undesirable vibrations of the flexible body. It is comprised of a rigid hub and a
flexible appendage as shown in Figure 1. The flexible appendage is composed of a base beam cantilevered
to the rigid hub and a tip beam rigidly connected to the base beam at a right angle. The simulator has
one reaction wheel and two cold gas thrusters for the actuation of the rigid hub. The FSS is supported by
five air pads on a granite table to simulate a frictionless environment. Angular position of the spacecraft
hub is measured by the Rotation Variable Displacement Transducer (RVDT). Angular velocity of the hub
is measured by a rate gyro installed on the simulator. An accelerometer is also installed to measure the
acceleration of the tip of the flexible appendage. Data acquisition is performed via a dSPACE DS-1103
controller board hosted by a personal computer. The control method is programmed and compiled using
Matlab/Simulink and downloaded to the controller board for implementation.

III. Mathematical Model of Flexible Spacecraft Simulator

The equation of motion describing the dynamics of the Flexible Spacecraft Simulator can be written as2

Jzz θ̈ +

n
∑

i=1

Diq̈i = u

q̈i + 2ζiωiq̇i + ω2
i qi + Diθ̈ = 0 (i = 1 · · ·n)

(1)

where θ is the angular position of the hub, qi represents for the ith flexible mode, Jzz is the moment of
inertia of the whole system, u is the total torque applied to the main body, ζi is the damping ratio of the

ith flexible mode, and ωi is the natural frequency of the ith flexible mode. The rigid-elastic coupling for the
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ith flexible mode, Di, is given by

Di =

∫

F

(xF φ
y
i − yF φx

i )dm (2)

where xF and yF are coordinates of a point on the flexible structure, and φx
i and φ

y
i are the x and y

component of the ith modal vector respectively. The equation of motion can be written as a set of second
order differential equations such that

[

Jzz DT

D I

] [

θ̈

q̈

]

+

[

0 0

0 Γc

][

θ

q

]

+

[

0 0

0 Λc

][

θ

q

]

=

[

1

0

]

u =⇒ M z̈ + Cż + Kz = bu (3)

where
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










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0 0
. . . 0
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2 · · · 0
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







and D =













D1

D2

...

Dn













(4)

Assuming that the matrix C is a linear combination of M and K, the equation of motion can be decoupled
into a rigid body mode and n set of flexible modes. Define the new decoupled states η as z = V η, where
columns of V is the eigenvectors of M−1K. Then, the decoupled state equation of motion becomes

η̈ + V −1M−1CV η̇ + V −1M−1KV η = V −1M−1bu =⇒ η̈ + Γη̇ + Λη = γu (5)

The matrices, Γ and Λ, are now diagonal. The equation of motion is further represented by a state-space
form as

ẋ = Ax + Bu (6)

where

x =
[

η0 η1 · · · ηn η̇0 η̇1 · · · η̇n

]

A =

[

0 I

−Λ −Γ

]

B =

[

0

γ

] (7)

States are defined such that η0 represents rigid body mode and η1 · · · ηn represent n flexible modes.

IV. Control Design of Flexible Spacecraft Simulator

A. Jerk Limited Control of a Rigid Body

1. Bang-Bang Control

The simplest approach to design a control input for slew maneuvers is to consider only the rigid body mode
of the system and design a time-optimal control. From the decoupled equation of motion in Equation 5, the
rigid body mode equation of motion can be extracted as

η̈0 = γ0u (8)

The resulting time-optimal rest-to-rest maneuver control profile for the rigid body equation is a bang-bang
with one switch at the mid-maneuver time. The total maneuver time is determined to satisfy the boundary
condition of the maneuver (i.e. initial and final displacement). The solution to the rigid body equation is
one switch bang-bang with one switch at 0.5Tf , where the final time Tf is

Tf =

√

4d

γ0umax
(9)

where d is the desired rigid body displacement. The optimality of the control can be easily verified by
formulating Hamiltonian and investigating the co-states and the switching curve. The time-optimal Bang-
Bang control profile has to be modified if there is a saturation of the control torque from the reaction wheel.
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Figure 2. Rigid Body Bang-Off-Bang Control Input

Since there is a limitation of the maximum speed of the reaction wheel, the control needs to be turned off
at the saturation limit. The time when the reaction wheel reaches its maximum velocity becomes

t1 =
Jw max(θ̇w)

umax
(10)

where, Jw is inertia of reaction wheel, θ̇w is the angular velocity of reaction wheel, and umax is maximum
torque such that

umax =
max(θ̈w)

Jw

(11)

where θ̈w is the maximum acceleration of the reaction wheel. Figure 2 illustrates the rigid body bang-off-
bang control profile. Jerk is defined as a rate of change of control. Jerk becomes the energy transmitted to
excite the flexible modes of the system. From the rigid body bang-off-bang control profile, the control will
change its value instantaneously at the control switches, which will result in an infinite jerk. This will create
undesirable vibration if the bang-off-bang control is used in the flexible system. Limiting this infinite jerk is
discussed in the following sections.

2. Use of Known Smooth Curves for Jerk Limitation

It is shown in1 that the simple smooth curve approximation of the bang-bang control profile can be effective
in reducing the residual vibration for a slew maneuver. Since the smooth curve has a finite jerk value, each
step of the bang-bang control can be approximated with some known smooth curve. In this paper, the
versine function6 is adopted for a smooth control profile. Figure 3 shows the jerk limited control profile
using the versine function. From Figure 3, smooth parameter α is defined such that

tA = α
t1

2
0 ≤ α ≤ 1 (12)
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Figure 3. Versine Control Input Profile (α = 0.6)

Then, the maximum jerk can be adjusted by the value of α. The versine control input can be written as a
function of time as

u(t) = 0.5Tmax

(

1 − cos π
tA

t
)

0 ≤ t < tA

u(t) = Tmax tA ≤ t < t1 − tA

u(t) = 0.5Tmax

[

1 + cos π
2tA

(t − (t1 − tA))
]

0 ≤ t < tA

(13)

The deceleration phase, the control profile becomes negative. The maximum jerk in this profile becomes

Jmax =
umaxπ

2tA
(14)

3. Polynomial Approach

Another approach to limit the jerk in the control design is to use the polynomial function instead of a known
smooth function. Then the polynomial function can be optimized such that the maximum jerk of the control
profile is minimized. This dictates solving the minimax optimization problem. A simplest direct method for
this problem is to utilize the linear programming technique. The nth order polynomial control input can be
written as

u(t) = Ta (15)

where T = [t0 t1 t2 · · · tn] and a = [a0 a1 a2 · · · an]T . Now a is the vector of unknown coefficients of
polynomial function. The jerk at time t is now written as

u̇(t) =
dT

dt
a (16)
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For a polynomial control profile rising from 0 to Tmax with given time tA and maximum jerk Jmax, the linear
programming problem statement becomes

find a = [a0 a1 a2 · · · an]T

subject to the constraints

u(0) = 0, u̇(0) = 0

u(tA) = Tmax, u̇(tA) = 0

|u̇(ti)| =
∣

∣

dT
dt

|t=ti
a
∣

∣ ≤ Jmax, (0 ≤ ti ≤ tA)

(17)

The inequality condition requires discretization of time ti between t = 0 and t = tA. Note that the additional
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Figure 4. n
th Order Polynomial Control Input Profile (α = 0.6, n = 9)

constraints of u̇(0) = 0 and u̇(tA) = 0 are added to smooth the control at the beginning and at the end of
the control profile. Further smoothing can be possible by adding more constraints, for example ü(0) = 0
and ü(tA) = 0. The smoothness of the control profile can also be modified by utilizing a different order
of polynomial functions. This linear programming formulation is a phase 1 problem in order to find the
coefficient satisfying constraints with given maximum jerk Jmax and time tA. If the solution to the problem
is feasible, the maximum jerk can be reduced further until the feasible solution is not found. Then the jerk
value becomes the minimum of maximum jerk within the given time [0 tA]. Similar problems can also be
solved while fixing the maximum jerk value and minimizing the time tA. For efficient reduction in Jmax or
tA, the bisection algorithm can also be used. With the approach used in the previous optimization technique,
the 9th order polynomial profile control profile can be obtained for rigid body spacecraft model as shown in
Figure 4.

4. Effect of Jerk Limitation

In the previous sections, the method of jerk limitation has been presented. In order to study the effect of
jerk, simple second order mass-spring system of ẍ+2ζωnẋ+ω2

nx = ω2
nu is considered with the input profiles

designed in the previous section as shown in Figure 5. The control rise time, tA, determines the maximum
jerk of the input profiles and the amplitude of the control after time tA is designed to be 1. The residual
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Figure 5. Jerk Limited Input Profiles

energy at time tA due to the flexibility of the system can be written as

E(tA) =

√

1

2
ω2

n(x(tA) − 1)2 +
1

2
ẋ(tA)2 (18)

Figure 6 shows how the jerk limitation affects the residual vibration of the different frequency. The ramp
input in the top of Figure 5 without damping is used to generate the plot. When tA = 0, the control input
becomes a step input and the energy level is large. As tA increases, the residual energy reduces. With the
ramp input with zero damping, the residual energy becomes zero at tA = 2nπ

ωn
with the positive integer n.

Therefore, there are no advantages of increasing tA beyond 2π
ωn

. Also, it can be seen that the energy rolls
off more quickly for higher frequencies than for low frequencies. Figure 7 shows how the residual energy
changes with different control profiles and damping values. From the top plot of Figure 7, residual energy
reduction is slower for polynomial and versine profile since the maximum jerk is higher than the ramp input
for the same control rise time. For the practical application of reference trajectory tracking of a spacecraft, a
smoothed control profile is more advantageous because of the resulting smoother reference trajectory. With
the presence of damping, the residual energy cannot reach zero with the jerk limitation as shown in second
and third plots of Figure 7. With the increased damping of ζ = 0.5, the versine profile was able to reduce
the residual energy more for given control rise time.
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5. Simulation Results of Jerk Limited Rigid Body Control Profiles

From the analysis given in,2 the mathematical model with one rigid body mode and eight flexible modes
under 100 Hz is utilized for numerical simulation. Parameters of the Flexible Spacecraft Simulator for
Equation 3 are

Jzz = 7.874 Kg − m2

D =
[

−0.9334 −0.6018 −0.0463 −0.0545 −0.0306 −0.0273 −0.0195 −0.0113
]T

Λc = diag (2π[0.2510 0.7084 9.369 16.15 34.70 46.81 77.00 94.83])

(19)

The simulation was performed with the maximum torque of umax = 0.5 N-m and desired slew angle of d = 60
degrees. 5 percent damping is added to the each flexible mode for simulation. The control turn-off time, t1,
was set to be 3 sec and the final maneuver time was determined to satisfy the displacement constraint. With
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Figure 8. Response first three states including hub rotation

the feedforward application of the three different control profiles (bang-off-bang, polynomial, and versine),
responses of the first six states including the spacecraft hub rotation are plotted in Figure 8 and Figure 9.
If the flexible modes were not excited with these control profiles, there would be no residual vibration and
the steady-state error at the end of the maneuver would be zero. However, excitation of the flexible modes
of the system results in undesirable residual vibration and maneuver displacement error. The response plots
show that the flexible modes are less excited for polynomial and versine control profiles than bang-off-bang
control profile due to the limitation in jerk. The states with higher frequency contents in Figure 9 show that
the high frequency modes are minimally excited for polynomial and versine control profiles, although quickly
damped out for the bang-bang control profile. Therefore, low frequency mode excitation more significantly
effects the spacecraft hub vibration. Figure 10 shows the spacecraft hub displacement at the end of the
maneuver. The bang-off-bang profile has the smallest control final time, however, it yields a largest residual
vibration. With the jerk limitation with versine and polynomial control profile, the residual vibration is
reduced. The residual vibration can be further reduced by increasing the control rise time, however, the
control actuation time will be significantly increased for low frequency modes. Therefore, the control profile
should be designed to minimize the low frequency vibration in a more effective manner.
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B. Control Design for Low Frequency Modes

1. Input Shaping

With the jerk limitation of the rigid body control profile, excitation of the flexible modes can be reduced.
With the of single rigid body mode and single flexible mode with no damping, the vibration can be completely
eliminated with the proper selection of control rise time. However, this will require that each step of the
bang-bang control should be approximated with a smooth control profile with the minimum control rise time
of 2π

ωn
, depending on the jerk limitation method. Input shaping is an effective method to cancel the flexible

dynamics of the system, which can be well suited for cancelling the low frequency mode excitation effect.3

The input shaping technique requires the control input to be convoluted with a set of impulses such that
the resulting control input cancels out the flexible dynamics of the system. Since we are targeting the low
frequency modes of the system, two low frequency modes of the Flexible Spacecraft Simulator are considered.
The decoupled equation of motion considering only two dominant flexible modes is







η̈0

η̈1

η̈2






+







0 0 0

0 2.794 0

0 0 20.911













η0

η1

η2






=







0.127

−0.133

−0.093






u (20)

The eigenvalues of the system are 0, 2.794, and 20.911, respectively. The rigid body mode corresponds to 0
eigenvalue, and the frequency of two flexible modes are defined such that ω2

1 = 2.794 and ω2
2 = 20.911. For

the zero vibration input shaping technique with specific target frequency, the impulse sequence is defined as

Ai = [
e

ζπ√
1−ζ2

1 + e
ζπ√
1−ζ2

1

1 + e
ζπ√
1−ζ2

], ti = [0
π

ω
√

1 − ζ2
] (21)

where Ai denotes the amplitude of the impulse and ti denotes the time when the corresponding magnitude of
Ai impulse is applied. The input shaping technique can handle multiple frequencies by convolving multiple
impulse sequences. The shaped control profile will have an added control time of half the damped period
for each targeted frequency mode. Figure 11 shows the shaped control with 9th order polynomial input
targeting two low frequency modes of the system. The maneuver time has increased by one half period of
each flexible mode frequency compared to the reference polynomial input. Since the reference input has a
limited jerk, the resulting shaped input also has a limited jerk value. Since the positive impulse sequence is
used and the sum of the impulses are 1, the resulting shaped control is guaranteed to have a maximum jerk
less than or equal to the maximum jerk of the reference control input.

2. Jerk Limited Optimal Control Including Dominant Flexible Modes

In designing a slew maneuver control, one natural choice is to find a minimum-time solution for fast pointing.
Using the input shaping method with positive impulses, the control level is always less than the maximum
torque. The shaped control profile is not time optimal, since the resulting control profile does not utilize
maximum torque available. For example, maximum torque used in the shaped input in Figure 11 is less
than 0.5 N-m, which is the maximum torque limit. Therefore, it is possible to reduce the final time by
find the time-optimal solution that includes the dominant flexible modes from the beginning. Muenchhof
and Singh4 proposed the time-optimal control profile by modifying the each step of the control with a
ramp input, which has a limited jerk value. For a rest-to-rest slew maneuver with rigid body and flexible
body modes, the optimal control problem becomes a two point boundary value problem. For a rest-to-rest
time-optimal control problem with the given torque constraints, the optimal control profile for systems like
Flexible Spacecraft Simulator is a type of bang-bang. If there is no damping, the bang-bang control profile
will have 2n+1 switches, where n is the number of flexible modes. With this knowledge, two point boundary
problem can be solved with parameter optimization where the unknown parameters are the switch and final
time. The constraints for the parameter optimization are obtained from the input shaping5 or time-delay
filter technique,4 because the vibration of the flexible mode has to be zero at the end of the maneuver. An
additional constraint is the boundary condition to meet the displacement requirement. For a system given
in Equation 20, the time-optimal control input is 5 switch bang-bang. With the input shaping technique,
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Figure 11. Shaped 9th Order Polynomial Control Input

the step size of maximum control torque of um is shaped with a set of impulses, which are defined by

Ai =
[

1 −2 2 −2 2 −2 1
]

ti =
[

0 T1 T2 T3 T4 T5 T6

] (22)

where, T1 · · ·T5 is switch times and T6 is the final time. The resulting shaped control profile is 5 switch
bang-bang with unknown switch and final time. It is same as filtering the step input with the step size of
um with the following time-delay filter in the frequency domain.

G(s) = 1 − 2e−sT1 + 2e−sT2 − 2e−sT3 + 2e−sT4 − 2e−sT5 + e−sT6 (23)

Now the time-optimal control problem becomes finding the unknown switch and final time, given the con-
straints of all the vibration modes are zero and rigid body boundary condition is satisfied at the end of the
maneuver. It will result in the same constraints either by solving the impulse sequence for zero vibration or
by designing a time-delay filter using frequency domain pole-zero cancellation. Since it is simpler to derive
constraints in the frequency domain, pole-zero cancellation approach is used with the time-delay filter. The
system has two poles at 0, two conjugate poles at ±j1.6715, and two conjugate poles at ±j4.5729. From the
pole-zero cancellation, the constraints for parameter optimization become

G(s)|s=0 = 0
dG(s)

ds

∣

∣

∣

∣

s=0

= 0 G(s)|s=±j1.6715 = 0 G(s)|s=±j4.5729 = 0 (24)

One additional constraint is from the boundary conditions. At the initial and final time, the boundary
condition is

z(t = 0) = [0 0 0]T

z(t = T6) = [d 0 0]T
(25)

The corresponding boundary condition for decoupled states are

η(t = 0) = V −1z(t = 0)

η(t = T6) = V −1z(t = T6)
(26)
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Figure 12 shows the resulting time-optimal control input, which is 5 switch bang-bang. By modifying the
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Figure 12. Time-Optimal Control Input of FSS

infinite jerk step of the time-optimal control profile shown in Figure 12, jerk can be limited to reduce the
unwanted excitation of the un-modelled frequency modes. In order to do this, define control input u as a
state variable such that u̇ = v. Now v represents jerk and acts as an input variable to the system. From
Equation 20, the state-space representation of the system including u state becomes







η̇

η̈

u̇






=







03×3 I3×3 03×1

F 03×3 G

01×3 01×3 01×1













η

η̇

u






+







03×1

03×1

I1×1






v (27)

Instead of actual control input u, jerk profile is parameterized, which is a bang-off-bang control profile as in
the bottom of Figure 13. With this jerk profile, the actual control input will have a limited jerk defined by
the maximum value of jerk. Defining maximum jerk and maximum control torque as Jmax and umax, the
time-delay filter becomes

G(s) = 1 − e−sτ − e−s(T1−τ) + e−s(T1+τ) + e−s(T2−τ) − e−s(T2+τ) − e−s(T3−τ)

+e−s(T3+τ) + e−s(T4−τ) − e−s(T4+τ) − e−s(T5−τ) + e−s(T5+τ) + e−s(T6−τ) − e−sT6

(28)

where, τ =
umax
Jmax

. From Equation 27, the system has seven poles, where three poles at 0, two conjugate

poles at ±j1.6715, and two conjugate poles at ±j4.5729. The constraints for solving unknown switch times
and final time are

G(s)|s=0 = 0
dG(s)

ds

∣

∣

∣

∣

s=0

= 0
d2G(s)

ds2

∣

∣

∣

∣

s=0

= 0 G(s)|s=±j1.6715 = 0 G(s)|s=±j4.5729 = 0 (29)

With these constraints, parameter optimization was performed with the slew maneuver angle of 0.5 rad,
maximum control torque of 4 N-m, and maximum jerk of 30 N-m/sec. The resulting jerk and control profile
is shown in Figure 13. It has a slightly larger final maneuver time compared to time-optimal control profile,
however, the jerk value has been limited.
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Figure 13. Time-Optimal Control Input of FSS
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V. Experiment with Flexible Spacecraft Simulator

A. System Identification of Flexible Spacecraft Simulator

Considering no disturbance to the system, equation of motion of the Flexible Spacecraft Simulator can be
rewritten as

(Jh + Jw)ω̇h + Σn
i=1Diq̈i = −Jwω̇w = u

q̈i + 2ζiωiq̇i + ω2
i qi + Diθ̈ = 0 (i = 1 · · ·n)

(30)

From Equation 30, the input of the system becomes the momentum change of the reaction wheel. Therefore,
reaction wheel dynamics were first identified. The equation of motion for the reaction wheel ignoring the
dynamics of the electrical system of the motor can be written as

Jwω̇w + cωw + fcsign(ωw) = uv (31)

where, Jw is a inertia of the reaction wheel, c is viscous damping coefficient, fc is coulomb friction, and uv

is the voltage input to the reaction wheel. The angular velocity of the reaction wheel is measured from the
hall sensor output. From Figure 14, biased bang-bang control input was used to identified the parameters
of the system so that the resulting model closely follow the measured reaction wheel speed response. The
bottom of Figure 14 shows the responses of identification result (J = 0.58, c = 0.006, and fc = 0.07). From
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Figure 14. Measured and Identified Reaction Wheel Responses

Equations 30 and 31, the actual control input becomes

u = −uv + cωw + fcsign(ωw) (32)

The actual control input compensates the friction and viscous damping of the reaction wheel such that
Jwω̇w = uv. The next step is to identify the dynamics of the Flexible Spacecraft Simulator. Bang-bang input
and hub angular position and velocity response data was collected from an experiment. For a determination of
the unknown parameters, the number of the flexible modes to be included in the model was first determined.
Figure 15 shows the tip acceleration from free response and its Fast Fourier Transformation results. There
are three dominant frequency modes at 0 Hz, 0.2554 Hz, and 0.7685 Hz. Therefore, one rigid body mode
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Figure 15. Frequency Contents of FSS

and two flexible body modes are considered. From Equation 30, n becomes 2 and the unknown parameters
to be determined are Jzz = Jh + Jw, d1, d2, ζ1, ζ2, ω1, and ω2. Nonlinear least square optimization was
performed to find the unknown parameters which minimizes the cost

nd
∑

i=1

[

(θ(ti) − θm(ti))
2

+ (ω(ti) − ωm(ti))
2
]

(33)

where, nd is the number of data points, θ and θm are angular positions from the model and measurement,
and ω and ωm are angular velocities from the model and measurement. Figure 16 shows the results of the
identification with the identified parameters (Jzz = 19.2253, d1 = −1.6190, d2 = −1.1193, ω1 = 0.2372 Hz,
and ω2 = 0.7435 Hz). Note that the input is represented by voltage, so torque factor should be multiplied
to determine the actual torque in Newtons. From the identified decoupled frequency values of ω1 and ω2,
the flexible system frequency becomes 0.2551 Hz and 0.7738 Hz, which are close to the frequencies obtained
from the Fast Fourier Transformation in Figure 15.

B. Generation of Reference Trajectory

Feedforward application of the control profile developed in the previous section will always create residual
vibration and slew angle error because of incorrect modelling and disturbances. It is more practical to use the
tracking type of feedback control law as presented in.1 This control law is also globally stable about a state
at the end of the slew maneuver. Figure 17 shows the control profiles considered in the experiment. They
are rigid body time-optimal bang-bang, versine, polynomial, input-shaped polynomial, time-optimal with
one rigid body and two dominant flexible modes, and jerk limited time-optimal control profiles. The control
profiles are designed for a rest-to-rest maneuver of 0 to 25 degrees. Actuation with maximum/minimim
control level of 1.5/-1.5 Volt is limited to 2 seconds to allow the reaction wheel to operate within the
maximum angular speed. Smoothing parameter of α = 0.8 was used for versine and polynomial control
profiles. For a rigid body time-optimal bang-bang and time-optimal with flexible modes have infinite jerk
value at the control switches as well as initial and final control time. For a versine profile, the maximum
jerk value is 2.9452. For a polynomial control profile, jerk value is minimized to 2.0089. For an input shaped
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Figure 16. Measured and Identified FSS Hub Responses

polynomial control profile, maximum jerk value is also limited by the jerk value of the polynomial profile.
For a jerk limited time-optimal control profile, jerk value is limited to 10 and 2.7. Figure 18 shows the
corresponding reference trajectories which are used for the feedback tracking control. Infinite jerk in bang-
bang and time-optimal control profiles creates sharp edges on the reference velocity trajectories, whereas
jerk limited control profiles have smooth trajectory motion.

C. Experimental Results

With the feedforward control profiles and their corresponding reference trajectories, feedforward and feedback
tracking control was performed. Figure 19 shows the resulting trajectory of the spacecraft hub as well as
the reference trajectory. It is shown that the resulting trajectory closely follows the reference trajectory.
The resulting angular position of the spacecraft hub at the end of the control is also shown in Figure 20.
Without end game control at the end of the maneuver, the residual vibration will last a long time. The 3−σ

bound on angular position error is also shown in the figure. The standard deviation value shows that the
smooth control profiles such as versine and polynomial profiles have advantages over bang-off-bang control
as expected from.1 The further improvement can be made with input shaping with the added maneuver
time. Since a shaped input has a more smooth control profile, it performed better than time-optimal and
jerk limited time-optimal.
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Figure 17. Feedforward Input Profile
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Figure 19. FSS Responses from Experiments
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Figure 20. FSS Hub Angular Position Error
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VI. Conclusion and Future Research

In the investigation, both the simulation and experimental results are presented to show the effectiveness
of various jerk limited control profiles to reduce the vibration of the flexible spacecraft structure. The results
suggest that the jerk limited rigid-body control profile such as versine or polynomial profile is effective to
reduce the excitation of the flexible modes, however, better performance can be obtained from the handling
of the low frequency modes as in input shaped and jerk limited optimal control profiles. The input shaping
technique provided simple solution for exact cancellation of the known frequency modes. Although robustness
to the frequency variation is not mentioned in this paper, desensitized input shapers are also well suited for the
spacecraft slew maneuver application. The final time can be further decreased with the jerk limited optimal
control profile with the added complexity of parameter optimization with reasonable prior knowledge of the
control profile.
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