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This paper investigates spacecraft disturbance rejection filtering for both persistent and decaying 
disturbances.  The current study both validates the previously developed “dipole” disturbance rejection filter 
on a realistic non-linear spacecraft model, and extends the results to a new class of decaying disturbances. 
Although not designed specifically for decaying disturbances, prior investigations have demonstrated that the 
traditional “dipole” disturbance rejection filter attenuates both persistent periodic disturbances and decaying 
disturbances.  Here we introduce a new filter which we call the decaying disturbance rejection filter, which 
has greater attenuation than the traditional filter for decaying disturbances. The new filter is also based on 
the internal model principle like the traditional filter.  Also, it is shown that both the traditional and the new 
filter are not robust to frequency uncertainty. As a result, new closed-loop system identification methods are 
introduced to experimentally identify the disturbance frequency to be used within the filter design for both 
filter types.  
 

I. Introduction 

A common challenge in spacecraft control is the mitigation of disturbances emanating from flexible 
appendages.  In the present paper, disturbance rejection filtering is studied using the NPS Three Axis Simulator 
(TAS) testbed.  The TAS was developed at the Naval Postgraduate School in Monterey, CA and is shown in Fig. 1.  
The purpose of the TAS was to prove a satellite’s ability to redirect a laser originating from Earth, an aircraft, or 
another satellite to another location on Earth for communication or defense applications.  A satellite utilizing lasers 
requires exceptional acquisition, pointing and tracking capabilities.  On-going research has been conducted to study 
fine acquisition, pointing, and tracking requirements1, 2.  Recently, a flexible appendage has been added to the TAS 
to serve as a source of vibration disturbance to the spacecraft bus for vibration disturbance studies.  
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Figure 1.  Naval Postgraduate School’s Three-Axis Simulator (TAS). 
 
Much research has been performed in the area of vibration suppression of flexible appendages with a 

variety of methods including Input Shaping, conventional Finite Impulse Response (FIR) and Infinite Impulse 
Response (IIR) filtering, and “dipole” Disturbance Rejection Filtering (DRF).   Input Shaping, which convolves a 
series of impulses with the reference signal to reduce residual vibrations, has been shown to be very effective with 
both single degree of freedom systems (e.g. Ref. 3-4) and multiple degree of freedom systems (e.g. Ref. 5-9).  In 
addition, its effectiveness has been experimentally validated on several systems including coordinate measuring 
machines, long reach manipulators, and cranes (e.g. Ref. 10-12).  Conventional FIR and IIR filters have also been 
experimentally demonstrated to be effective in reducing residual vibrations (e.g. Ref. 13-15).  Comparisons between 
Input Shaping and conventional filtering methods have shown Input Shaping to be more successful in some studies, 
and conventional filtering to be more successful in other studies, as a result of improved filter tuning16, 17.  

The current paper builds on the “dipole” disturbance rejection filter (DRF), which explicitly employs the 
disturbance vibration frequency into a filter embedded in the control loop.  The DRF is based on the internal model 
principle (Ref. 18-20) and its attenuation effectiveness has been shown in a simulation of the Hubble Space 
Telescope21 and in simulations for a general spacecraft with control moment gyroscopes (e.g. Ref. 22-23).  The 
filter’s effectiveness was also shown experimentally on NASA’s Mini-Mast truss structure at the Langley Research 
Center24 and on NASA’s Advanced Control Evaluation for Structures (ACES) testbed at the Marshall Space Flight 
Center25.  The Hubble Space Telescope solar array disturbance problem was also attenuated by the same filter, 
although the filter was not termed the “dipole” DRF26. 

The traditional DRF theory is based specifically on persistent disturbances as opposed to decaying 
disturbances.  However, many disturbances are not persistently excited and decay before being excited again. 
Disturbances experienced on the TAS are such decaying disturbances, as the flexible appendage is manually 
deflected and released. The DRF experiments conducted on the NASA testbeds (Ref. 24-25) also appear to involve 
non-continuously excited (decaying) disturbances.  The first experiment of the collocated design on the Mini-Mast 
Truss Structure involved an input impulse disturbance24.  The ACES testbed was subjected to a step input of a 
hydraulically driven table, which created an overall excitation to the structure.  Therefore, it appears both input 
disturbances actually created decaying periodic disturbances as opposed to persistent periodic disturbances because 
a mechanical device was not sustaining the disturbance.   

This paper investigates spacecraft disturbance rejection filtering for both persistent and decaying 
disturbances using a realistic 3-axis spacecraft hardware testbed and associated linear and non-linear system models.  
The current study both validates the traditional “dipole” disturbance rejection filter and extends the results to a new 
class of decaying disturbances. As discussed above, although not designed specifically for decaying disturbances, 
prior investigations have demonstrated that the traditional “dipole” disturbance rejection filter attenuates both 
persistent periodic disturbances and decaying disturbances.  In the following it is shown that a new filter, which we 
call the decaying disturbance rejection filter, also based on the internal model principle, has greater attenuation than 
the traditional filter for decaying disturbances.  Also, it is shown that both the traditional and the new filter are not 
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robust to frequency uncertainty. As a result, new closed-loop system identification methods are introduced to 
experimentally identify the disturbance frequency to be used within the filter design for both filter types.   

The paper then is organized as follows. Section II reviews the theory behind the traditional DRF. Section 
III develops the new filter specifically for decaying disturbances, termed the decaying disturbance rejection filter 
(DDRF), and compares to the traditional DRF. Section IV describes the hardware testbed and associated linear and 
non-linear system models. Section V demonstrates the traditional DRF and new DDRF on the testbed models. 
Section VI investigates robustness of the filters to frequency uncertainty.  It will be shown that similar to the 
traditional DRF, the DDRF’s attenuation effectiveness is based on accurate knowledge of the disturbance frequency 
(and damping ratio). Thus, Section VII introduces two methods to experimentally determine the disturbance 
frequency when using disturbance rejection filters, and discusses the advantages of each.  Finally, Section VIII 
concludes the paper with a summary of results and future research directions. 

 
 

II. Dipole Disturbance Rejection Filter (DRF) 
 

A.  Internal Model Principle 
The “dipole” DRF is based on the internal model principle, which places disturbance poles inside the 

compensator loop so that the unstable disturbance poles are cancelled during loop closure between the output signal 
and input disturbance18 (Fig. 2).   Equation 1 shows the closed loop transfer function between the input disturbance 
signal, G(s),  and output signal, Y(s), of Fig. 2.  In closed loop, the disturbance poles are cancelled by the inclusion 
of a DRF. 

 

 

 

 

 

 

 

 

 

Figure 2.  Closed-loop disturbance rejection control system based on internal model principle. 
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Although the traditional DRF shown in Fig. 2 does not include a numerator, a numerator with the same 

order as the denominator should be chosen to ensure a zero for every pole in the DRF root locus19, 20. 
To derive the traditional DRF, first consider a persistent periodic disturbance of a single frequency, which 

can be represented in the time domain as: 
 

 ( ) Asinppdg t tω=  (2) 
 

Taking the Laplace transform of the persistent periodic disturbance results in the Laplace function: 
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where multiplying the numerator and denominator of Eq. 3 by 2
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Only the disturbance pole is of interest.  Therefore, the persistent periodic disturbance frequency (ω ) is 

employed as the disturbance rejection frequency ( pω ) and the DRF becomes: 
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 The traditional DRF numerator is included as a modification of (4), and recall that the numerator and 
denominator should be the same order.  The traditional DRF bode plot is shown in Fig. 3 and some guidelines in 
selecting zω are provided in the next paragraph. 

 
Figure 3.  Traditional Disturbance Rejection Filter (DRF) Bode Diagram. 
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An pω  and zω  pair is termed a “dipole” and the difference between the pω  and zω  values is termed the 

dipole strength20.  The settling time of the transient response increases as the difference between the dipole terms 
increases.  The zω  can be chosen to be less than or greater than pω  as shown in Fig. 3.  A magnitude magnification 

in the high frequencies results from zω > pω  and a magnitude attenuation in the high frequencies results from 

zω < pω .  The net magnitude attenuation or magnification increases as the dipole strength increases.  It is suggested 

that zω  be selected to be between two consecutive poles of the system for stability 19. 
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Shown in Eq. 5, the traditional DRF is basically a 2nd Order Generalized Filter20, ( )cG s  (Eq. 6), without 

damping terms.  Actually, damping terms can be included as reported in the literature21.  In a Hubble Space 
Telescope solar array disturbance analysis, the numerator damping term was made high compared to the 
denominator damping term, which made the anti-resonance practically non-existent21.  The filter was designed by 
adjusting the damping terms to create a 2nd Order Non-Minimum Phase Bandpass filter.  Note that the damping 
terms in that filter were not related to the actual disturbance damping, but were used to tune the system.  Finally, 
note that for disturbances of several frequencies, dipoles may be included for each frequency19. 

 
 

III. Decaying Disturbance Rejection Filter (DDRF) 
 
The Decaying Disturbance Rejection Filter (DDRF) is also based on the internal model principle where the 

disturbance poles are placed as the DDRF poles so that the disturbance poles are cancelled during loop closure27.  It 
will be shown that the DDRF has the decaying periodic disturbance’s damped natural frequency as its poles.  In 
addition to the damped natural frequency, the DDRF poles will also consider the disturbance’s damping ratio (ζ ) 

and natural frequency ( nω ).  A decaying periodic disturbance signal can be represented in the time domain as: 
 

 ( ) Asin
dpd

at
dg t e tω−=  (7) 

 
where A is the disturbance amplitude and na ζω= . 

Taking the Laplace transform of the decaying periodic disturbance signal gives the Laplace function: 
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where multiplying the numerator and denominator of Eq. 8 by 2
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Based on the internal model principle, the decaying periodic disturbance pole is the only interest to the 

designer and the pole will be used to design a DDRF.  Therefore, the decaying periodic disturbance damped natural 
frequency ( dω ) is employed as the disturbance rejection frequency ( pω ).  Designing the DDRF numerator to have 
the same order as the denominator, the DDRF becomes: 
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Multiplying out Eq. 10a and substituting nζω  for a  yields Eq. 10b. 
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 Note that the decaying disturbance damping ratio (ζ ) is present in the numerator and denominator of Eq. 10b.  
Also note that no terms are left undefined, and all are specifically related to the input disturbance. Also, note that 
this filter is specifically different from the traditional DRF (Eq. 5) or the “damped” DRF (Eq. 6). 
 
 

IV. Naval Postgraduate School’s Three-Axis Simulator (TAS) and Its Linear and Non-Linear 
Simulation Models 

 
The traditional DRF, the new DDRF, and the underlying internal model principle are all based on linear 

system theory.  Studies of both filters on linear system models have been reported (Ref. 19-20) (DRF) and (Ref. 27) 
(DDRF), and results validate the linear system theory as expected. In this paper, the traditional DRF and DDRF 
effectiveness is shown on a more realistic non-linear model to imitate the non-linearity of the experimental testbed.  
However, the proposed input disturbance frequency determination method discussed in Section VII will be analyzed 
using both a linear and non-linear simulation model. 

The TAS hardware simulator’s components are shown in Fig. 4.  The simulator underside has a semi-
spherical ball which mates with an air bearing’s semi-spherical cup.  The TAS essentially has three-axis frictionless 
motion when pressure is supplied through the air bearing, which produces a thin film of air between the semi-
spherical ball and cup. 
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Figure 4.  TAS Components. 

 
Removable hanging masses and fine-tuning masses are utilized to balance the TAS such that the center of 

mass corresponds to the TAS center of rotation.  In doing so, the TAS emulates a satellite in a space environment.  
However, perfect balancing cannot be realistically achieved by manual tuning, so a control input torque must 
continually counter the imbalance disturbance torque. 
 For actuators, the TAS has three reaction wheels, which are orthogonal to each other.  The TAS uses two 
inclinometers and a one-axis infrared (IR) sensor for attitude sensing.  The inclinometers are capacitive liquid based 
sensors where the sensors’ capacitance is a linear function of the liquid angle.  Although inclinometers are not used 
on actual spacecraft, inclinometers provide a reasonably accurate and inexpensive alternative to determine the TAS 
pitch and roll angles.  The infrared sensor has two photo-transistors, which measure the change in intensity of a light 
source to determine the TAS yaw angle.  For angular rate, the TAS uses three-orthogonal mechanical rate gyros.  
The TAS uses MATLAB/SimulinkTM and xPC TargetTM for real-time control.  More details of the hardware design 
may be found in Ref. 27 . 
 The TAS is physically subjected to a decaying periodic disturbance produced from the initial displacement 
of an aluminum point mass and beam, which is attached to the edge of the TAS as shown in Fig. 1.  The disturbance 
parameters are experimentally derived and are shown in Table 127. 
 

 

 

 

 

 

 

 

                                                 
TM MATLAB and xPC Target are trademarks of The Mathworks, Inc. 
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Parameter Variable Value Units 

Initial Disturbance 

Amplitude 
A 2.1313 Nm 

Disturbance Damped 

Natural Frequency 

 0.615119287151 

3.8649084672 
Hz     rad/s 

Disturbance Natural 

Frequency 

 0.615120919452 

3.86491872324 
Hz     rad/s 

Disturbance Damping 

Ratio 

 
0.002303744   

Decay 
 

0.008903784 rad/s 

Table 1  Decaying Periodic Disturbance Parameters 

A.  TAS Single Axis Linear Simulation Model 
 The single axis linear TAS simulation block diagram is shown in Fig. 5.  The simulation consists of a PID 
controller, Roll-Off Filter (ROF), disturbance rejection filter, disturbance signal, and a rigid body spacecraft plant.  
The transfer function for the PID controller, ROF, and plant are shown in Eqs. 11-13.  The disturbance signal is 
either Eq. 2 or 7, depending on a persistent or decaying input disturbance.  Similarly, the disturbance rejection filter 
is either Eq. 5 or 10b. 
 

Scope

ROF

Roll-Off
Filter

Plant

Rigid Body
Spacecraft

DRF

Persistent or
Decaying Disturbance

Rejection Filter

Disturbance

Persistent or
Decaying Disturbance

PID

PID
Controller

Pos. Command

 

 
Figure 5.  Closed Loop Block Diagram of Rigid Body Spacecraft with PID Controller, ROF, and DRF. 
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where k , iτ , and dτ  are the proportional, integral and derivative PID gains, respectively. 
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where J is the rigid body inertia about the single axis. 
 The PID controller and ROF were designed by shaping the frequency response plot (bode diagram) to 
maximize the gain and phase margins, which would ensure stability.  The inertia parameter shown in Eq. 13 was 
experimentally determined.27     
 
B.  TAS 3-Axis Non-Linear Simulation Model   

The 3-axis non-linear TAS simulation is based on Euler’s rotational equation and the kinematic differential 
equation for Quaternions, which are shown in Eqs. 14 and 19, respectively20.   Note that in our model, the roll and 
pitch axes (axes 1 and 3) are aligned from the central point of the testbed table through the centerlines of the pitch 
and roll reaction wheels shown in Fig. 4.  The yaw axis (axis 2) is aligned with the vertical air bearing support 
structure shown in Fig. 1. 
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where [ ]1 2 3 4
Tq q q q=qv , [ ]1 2 3 4

Tq q q q=q
v
& & & & &  and [ ]1 2 3

Tω ω ω=ωv . 
 

Figure 6 shows the 3-Axis Non-Linear TAS Simulink model used to analyze the traditional DRF and new 
DDRF.  An attitude command is given, which is then transformed to a rate command from the relation for a 2-3-1 
rotation sequence shown in Eq. 20 20.  
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created by J. Lau (9/30/03)
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Figure 6.  3-Axis Non-Linear TAS Simulation Model. 
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The measured or actual rate is solved by Euler’s rotational equation, which is shown in Eq. 14.  The rate is 

then fed back so a rate error signal is calculated by taking the difference between the commanded and actual rate.  
At the same time, the actual rate is used in Eq. 19 to calculate the actual attitude in quaternions.  The quaternion 
vector is transformed to Euler angles where the actual attitude is fed back to the commanded attitude so the attitude 
error signal is calculated.  The conversion from quaternions to Euler angles for a 2-3-1 rotational sequence is shown 
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in Eqs. 21 - 23.  The attitude and rate error signals are utilized in PID control.  A control input torque (CIT) is 
generated after a DRF (Eq. 24) or DDRF (Eq. 25) depending on whether the filter design is considering a persistent 
or decaying input disturbance (Fig. 2). 
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The total external torque shown in Eq. 14 includes the control input torque, TAS imbalance disturbance 

torque, and a persistent or decaying periodic disturbance torque about the yaw axis.  All of the torques are in the 
spacecraft body frame and are represented in the Simulink model shown in Fig. 6.    

The TAS imbalance disturbance torques shown in Eq. 18 were approximated using the hardware testbed’s 
CIT experimental data and are each on the order of 0.1 Nm.  The imbalance torque is the result of the center of mass 
not coinciding with the center of rotation. This effect changes slightly depending on the success of each balancing of 
the testbed. A bias in the CIT experimental data approximates the magnitude of imbalance being countered (Fig. 
14). For spacecraft, the imbalance disturbance torque parameters can be more precisely obtained via coasting 
maneuvers28.  For the inertia matrix shown in Eq. 15, the inertia about the yaw axis was experimentally 
determined27.  The inertia about the pitch and roll axes were analytically determined and are also described in Ref. 
27.  The products of inertia were assumed small compared to the diagonal inertias.  Small values were estimated so 
coupling between the axes would also be small, based on the assumption that our coordinate system is close to the 
principal axes.  To numerically verify the final 3-Axis Simulation (3-AS), the sum of all torques in the zero 
command case was verified as zero as expected from theory27. 
 
 

V. Effect of DRF and DDRF in TAS Non Linear Model 
 

Knowing the decaying periodic input disturbance’s damped natural frequency, natural frequency, and 
damping ratio from Table 1, the DDRF is expressed as shown in Eq. 25.  When considering a persistent periodic 
input disturbance in the simulation, the decaying disturbance’s damped natural frequency will be used as the 
persistent disturbance frequency.  Therefore, the traditional DRF is expressed as shown in Eq. 24.  The zω  selected 

for both filters follows the guideline of being between two consecutive poles19.  The zω  is placed between one of 
the plant poles at the origin and the DRF’s or DDRF’s pole. 
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Equations 24 and 25 are employed in Fig. 6 depending if the filter is designed considering a persistent or 

decaying disturbance.  Evaluating Eqs. 24 and 25, it can be seen that the DDRF form looks like the traditional DRF 
form with damping terms.  However, it should be noted again that the DDRF damping terms are specifically 
dependent on ζ , nω , and pω , and are not arbitrary tuning or shaping parameters as in the 2nd order generalized 
filter20. 

Figure 7 shows the traditional DRF’s effectiveness on a persistent periodic input disturbance in the yaw.  
The attitude command is a one-degree position command in the yaw and a 0-degree position command in the pitch 
and roll to emulate the TAS stabilization process. This result again validates the results of several previous studies of 
the DRF (e.g. Ref. 21-23).  

 

|  
Figure 7.  Traditional DRF Effect on Persistent PD of 0.6151 Hz and 2.13 Nm Peak Magnitude  in 3-AS. 

 
We now consider the response of both the traditional DRF and new DDRF to the decaying periodic 

disturbance defined in Table 1.  Although not explicitly presented, the traditional DRF has been experimentally 
demonstrated in past research to attenuate decaying periodic disturbances24, 25.  Figure 8 shows that the traditional 
DRF does attenuate some of the decaying periodic disturbance as shown in past studies, but the new DDRF’s 
attenuation is superior.  Figure 9 combines Fig. 8 and zooms in on the last 20 seconds to show the DRF and DDRF’s 
effectiveness on a decaying periodic input disturbance in the yaw. The control input torque is of comparable 
magnitude using either filter, with the DDRF using slightly less torque.  
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    Figure 8.  Traditional DRF and DDRF Effect on Decaying PD of 0.6151 Hz and 2.13 Nm Initial Peak 

Magnitude  in 3-AS. 
 

 
Figure 9.  Traditional DRF and DDRF Effect on Decaying PD of 0.6151 Hz and 2.13 Nm Initial Peak 

Magnitude  in 3-AS (Zoom-In) 
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It should be noted that we were not able to show the new decaying disturbance rejection filter working on 

the hardware testbed directly as a result of actuator saturation. Our reaction wheel actuators were limited to 0.2 Nm, 
while our required torque was 2.13 Nm. 

 
 

VI. DRF and DDRF Robustness to Frequency Uncertainty 

 Figures 7 – 9 showed the traditional DRF and DDRF’s capability in attenuating persistent and decaying 
periodic input disturbances.  However, the results are based on the assumption that the designer exactly knows the 
disturbance frequency.  The disturbance frequency is not usually exactly known.  Figures 10 and 11 show the output 
position response when the traditional DRF and DDRF frequency does not exactly match the input disturbance 
frequency. 
 Figure 10 compares the response when the traditional DRF rejects the correct and incorrect decaying input 
disturbance frequencies.  The traditional DRF is not very robust as there is no attenuation when the traditional DRF 
rejection frequency is incorrect by +/- 0.1 Hz (approximately 15% frequency uncertainty).  Figure 11 compares the 
response when the DDRF also rejects the correct and incorrect decaying input disturbance frequencies.  The 
disturbance is almost completely eliminated when the DDRF rejects the correct disturbance frequency of 0.6151 Hz.  
If the DDRF rejection frequency is incorrect by 0.1 Hz, the results are similar to Fig. 10.  Therefore, neither the 
traditional DRF nor the DDRF are very robust to frequency uncertainty.  In the next section, we will introduce new 
system identification methods to explicitly determine the filter design frequency. 
 

 
Figure 10.  Traditional DRF Rejection Frequency Varies where Decaying PD is 0.6151 Hz in 3-AS 
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Figure 11.  DDRF Rejection Frequency Varies where Decaying PD is 0.6151 Hz in 3-AS. 

 
Knowledge of damping terms is also important for the DDRF (Eq. 10b), as inaccurate damping terms will 

reduce the effectiveness of the DDRF. However, note that when damping is incorrectly estimated as zero, the DDRF 
(Eq. 10b) reverts to the DRF (Eq. 5) and the filter is still somewhat effective as seen in Fig. 8. Increased damping 
reduces the control input torque (CIT), which also reduces disturbance rejection27. 

 
 

VII. Input Disturbance Frequency Determination 
  

It was shown in the 3-axis simulation that the traditional DRF and the DDRF are not very robust to frequency 
uncertainty.  If the input disturbance frequency is not exactly known, the traditional DRF and DDRF’s attenuation is 
negligible.  Therefore, the ability to determine the input disturbance frequency is essential for the designer.  In this 
section, two closed-loop methods to determine the input disturbance frequency will be shown.  The first method 
evaluates the control input torque (CIT) plot and simply counts the number of cycles in a time range.  The second 
method exploits a beating phenomena in the CIT that results from an inaccurate filter design frequency.  Both 
methods will be demonstrated in linear and non-linear simulations, as well as hardware experiments.   
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Figure 12.  Yaw CIT when Traditional DRF Rejection Frequency is not Equivalent 
to Disturbance Frequency in 1-AS (Persistent Disturbance Frequency = 0.6151 Hz). 

 
Figure 12 shows the CIT plot from the single-axis linear simulation (Fig. 5).  The top portion of Figure 12 

shows the CIT in closed-loop from the linear model when the traditional DRF is designed using a 0.5551 Hz 
disturbance rejection frequency ( pω ) and the bottom portion shows the CIT in closed-loop when the traditional 

DRF is designed using a 0.5351 Hz disturbance rejection frequency ( pω ), where the actual input disturbance 

frequency for both is 0.6151 Hz.  For the top and bottom plots of Fig. 12, zω  is 0.5 Hz. 
For the first frequency determination method, the input disturbance frequency can be found by measuring 

the high frequency oscillation in Fig 12.  This high-frequency oscillation in the top and bottom plots both reveal the 
input disturbance frequency of 0.6151 Hz.   

Shown in Fig. 12, it is also interesting to note that the “beating” phenomenon is occurring, which is the 
superposition of two waves with slightly differing frequencies29.  Through linear and non-linear simulation studies 
and hardware testbed experiments, it has been found that if the filter design frequencies obey the relation to the 
actual disturbance frequencies as 

 
Actual Disturbance Frequencyz pω ω< <  

 
in Eq. 5, then beats appear in the CIT plot.  For Fig. 12, recall that pω  is 0.5551 Hz and 0.5351 Hz for the top and 
bottom plots, respectively.  The bottom portion of Fig. 12 shows more beats than the top portion and also shows a 
decrease in CIT.  Therefore, as pω  approaches zω , which is 0.5 Hz, more beats occur in the CIT and the CIT 

decreases.  If pω  reached zω  then Eq. 5 would equate to 1 as if the rejection filter were not used.  As pω  
approaches the actual input disturbance frequency, less beats occur and the CIT increases to approach the 
disturbance amplitude27.   
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To validate the “beating” phenomenon of the linear system, disturbances and filters were investigated in 
both the 3-axis non-linear simulation model and on the actual hardware testbed.  The CIT plot from the non-linear 
simulation using the same disturbance and filter conditions of Fig. 12 is shown in Fig. 13.  Note that beating is once 
again present.  The input disturbance of Fig. 13 is a persistent disturbance.  Beats also occur if the input disturbance 
is decaying, and when using the DDRF on the decaying disturbance27.  
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Figure 13.  Yaw CIT when Traditional DRF Rejection Frequency is not Equivalent 
to Disturbance Frequency in 3-AS (Persistent Disturbance Frequency = 0.6151 Hz). 

 
The same phenomenon was also experimentally validated on the hardware TAS.  The hardware TAS 

parameters are equivalent to the simulation parameters (which are originally derived from the TAS testbed).  Below, 

the TAS attempts to maintain an Euler angle attitude of [ ]0 0 0 T
while experiencing a decaying periodic input 

disturbance.  The disturbance frequency is 0.6151 Hz and the traditional DRF rejection frequency is 0.5551 Hz. The 
resulting CIT response is shown in Fig. 14.  Again, beats are present. 
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Figure 14.  Experimental CIT Responses for 0.6151 Hz Decaying PD when Traditional DRF rejection 

frequency is 0.5551 Hz. Note that the pitch CIT is biased due to an imbalance of the testbed. 
 

A frequency determination method employing a traditional DRF and CIT beats will now be shown using 
the non-linear simulation results (Fig. 13).  Note that the method could have been demonstrated with either the linear 
simulation (Fig. 12) or the hardware experiment results (Fig. 14). The CIT beat frequency ( bf ), actual input 

disturbance frequency ( distf ), and DRF rejection design frequency ( DRFf ) are known to be related by: 
 

 b dist DRFf f f= −  (26) 
 
 It should be noted that Eq. 26 is simply describing the definition of a beat frequency.  Therefore, in this 
case, the beat frequency is produced by the slightly differing frequencies of the actual input disturbance frequency 
and the filter rejection frequency.  In the top portion of Fig. 13, the beat frequency is shown to be: 
 

1
1.5 beats 0.06 Hz

50 25 secbf
 = = −  

 

 
and in the bottom portion of Fig. 14, the beat frequency is:  
 

2
2 beats 0.08 Hz

37.5 12.5 secbf
 = = −  

 

 
where fDRF1 is 0.5551 Hz for the top portion and fDRF2 is 0.5351 for the bottom portion of Fig. 13.  Substituting  fDRF1 
and fb1 into Eq. 26: 
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And substituting  fDRF2 and fb2 into Eq. 26: 
 

2 2

2 2

0.08 0.5351
0.6151  Hz

b dist DRF

dist b DRF

dist

dist

f f f
f f f
f
f

= −
= +
= +
=

 

 
Note that the first method, evaluating the high frequency oscillation to determine the input frequency, could 

have been performed on any of the CIT plots. One would again find the input disturbance frequency to be 0.6151 
Hz. 

Therefore, if the filter designer has an estimate of the actual input disturbance frequency, the designer can 
use a “close” DRF rejection frequency to produce beats in the CIT and explicitly determine the actual disturbance 
frequency.  Notice that the simple system identification method can be implemented whether the plant is on-site or 
remote such as on an orbiting satellite. 
 Comparing the two frequency determination methods, there are some advantages to utilizing the method 
employing beats.  Using the proposed beats method, the designer is able to easily visualize if the rejection frequency 
( pω ) is correct or not.  If beats appear, then pω  is incorrect.  As the designer alters pω , either more or less beats 

will appear.  As previously stated, if pω  is increased towards the actual disturbance frequency, less beats will occur 
and the CIT magnitude will increase to the input disturbance magnitude.27  Therefore, by employing the beats to 
determine the input disturbance frequency, the designer has two simple visual trends that reveal if the rejection 
frequency is correct; (1) decrease in beats and (2) increase in CIT magnitude.   Although not developed further here, 
these trends could also be automated to tune the filters on-orbit, which would be especially helpful if the disturbance 
frequency was changing over time. These methods are applicable to both persistent and decaying disturbances. 
However, for the case of decaying disturbances, the quality of the disturbance frequency identification will clearly 
be dependent on the amount of time the disturbance manifests itself. 
 

 
VIII. Conclusion 

 
This paper investigated spacecraft disturbance rejection for both persistent and decaying disturbances using 

the Naval Postgraduate School 3-Axis spacecraft simulator. It built on the “dipole” disturbance rejection filter, based 
on the internal model principle.  Although not designed specifically for decaying disturbances, prior investigations 
have demonstrated that the traditional “dipole” disturbance rejection filter attenuates both persistent periodic 
disturbances and decaying disturbances.  In this paper, we developed a new filter, closely related to the traditional 
filter, which we call the decaying disturbance rejection filter. The new filter, also based on the internal model 
principle, was shown to have greater attenuation than the traditional filter for decaying disturbances on the Naval 
Postgraduate School 3-axis simulator non-linear model.  Also, it was shown that both the traditional and the new 
filter are not robust to frequency uncertainty.  Designing either filter with an error of 15% in the disturbance 
frequency essentially renders the disturbance filters ineffective. As a result, two closed-loop system identification 
methods were introduced to experimentally identify the disturbance frequency to be used within the filter design for 
both filter types. One system identification procedure takes advantage of the phenomenon that when a faulty 
frequency is used to design either filter, beating appears in the input control torque.  The beat frequency is related to 
the actual disturbance frequency.  Two natural extensions of this work would make for valuable further work. First, 
as noted earlier, we could not validate our DRF methods directly on the hardware testbed due to actuator saturation 
in our reaction wheels.  In fact, the needed reaction wheel torque is related to the disturbance magnitude, which 
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saturated our current reaction wheels. A study of the affect of actuator saturation on DRF methods would be useful. 
Also, we noted earlier that our closed-loop methods of frequency identification could be used to create automatic 
DRF filter tuning on-board orbiting spacecraft. This could be especially helpful if the disturbance frequency was 
changing over time. One promising method could be to indirectly ascertain beating by examining the CIT frequency 
response via a FFT. The formalization of an integrated DRF, system ID, and system tuning architecture would be 
valuable. 
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