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This paper concerns the cooperative control of multiple 
manipulators attached to the same base as they reposition a 
common payload. The theory is easily applied to inertially 
based problems as well as space based free-floating plat- 
forms. The system equations of motion are developed as 
well as a Lyapunov based controller which ensures stability. 
The closed chain aspect of the problem reduces the system’s 
degrees of freedom resulting in more actuators than degrees 
of freedom. This actuator redundancy is used to minimize a 
weighted norm of the actuator torques. A polynomial refer- 
ence trajectory describes the path the payload will follow. 
The disturbance torque transmitted to the spacecraft center- 
body by the motion of the manipulators is minimized by 
altering the order of the reference trajectory polynomial and 
its coefficients. Results from a two dimensional, dual arm 
configuration are included. Compared to the Lyapunov 
point controller alone, a fifth order polynomial reference tra- 
jectory leads to superior performance in terms of actuator 
torque magnitudes, spacecraft centerbody attitude control, 
and payload repositioning accuracy and time. An eighth 
order polynomial reference trajectory results in only mini- 
mal improvement over the fifth order case. A modified 
Lyapunov controller which approximates a PD controller 
produces results better than the Lyapunov point controller 
but not as good as either reference trajectory simulation. 

Space based robotics platforms experience conditions 
unlike those of their terrestrial counterparts. With respect to 
the dynamics of the systems, the most notable difference is 
the absence of a fixed base on which to locate the manipula- 
tors. The consequence of this difference is that motion of 
the space based manipulator transmits forces and moments 
to its mounting base resulting in translation and rotation of 
the base itself.’-2 Generally, this motion is unwanted 
because the attitude control subsystem of the vehicle must 
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compensate. One can find the spacecraft attitude distur- 
bance caused by manipulator motion and use that informa- 
tion to command reaction wheels on the main body.3 Better 
yet, one should try to minimize the attitude disturbance the 
manipulators transmit to the main body. For a spacecraft 
with a single manipulator with redundant kinematics, the 
excess degrees of freedom can be used to minimize reac- 
tions transmitted to the main body.4 If the manipulator is 
sufficiently redundant, the attitude disturbances may be 
eliminated altogether.’ For spacecraft with multiple manip- 
ulators, cooperative control takes on more than one mean- 
ing. In one case, one manipulator repositions an object 
while a second manipulator, which is not grasping the 
object, moves to provide counterbalancing torques on the 
main body thereby reducing the spacecraft attitude distur- 
bance.6 A more traditional concept of cooperative control 
of multiple manipulators assumes the manipulators are each 
in contact with the payload. One control strategy developed 
for a fixed base system controls the payload position and its 
internal forces using a Lyapunov controller or an adaptive 
~on t ro l l e r .~  A space based version uses object impedance 
control to position the payload and control its internal 
forces.8 In this paper, cooperative control means multiple 
manipulators grasping a common object moving in harmony 
to reposition the object. When more than one manipulator 
grasps an object, the actuator redundancy created by the 
closed chain dynamics permits tradeoffs to be made regard- 
ing how the actuators are used. The user has great flexibil- 
ity in choosing to what degree each actuator is involved in 
repositioning the payload. 

The following development of an analytical model is 
based on a multiple-manipulator space robotics system. The 
manipulators already have a firm grasp of the payload. The 
initial conditions for the system are known although there 
may be some error in these values. Desired final conditions 
are also known. The equations of motion are derived from 
Lagrange’s equations. This results in a set of second order, 
nonlinear, coupled, differential equations. Trajectory con- 
trol connects the boundary conditions. With reference tra- 
jectories, actuator inputs are computed by means of inverse 
kinematics. The actuator inputs are modified using a 
Lyapunov derived controller. The controller compares the 
reference trajectories with the actual trajectories. The refer- 
ence trajectories are selected by means of an optimization 
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algorithm to reduce the attitude disturbance on the main 
spacecraft. 

Development of the analytical model is predicated on 
establishing the variables and coordinates systems which 
will describe the system. The most general case is for a 
spacecraft with n manipulators involved in controlling the 
positioning of a common payload. The centerbody, manipu- 
lator links, and payload are rigid bodies. A semi-inertial 
axis system is located somewhere on the centerbody. The 
origin of this coordinate system remains fixed to the space- 
craft. However, this coordinate frame maintains an inertial 
orientation. The centerbody attitude is referenced to this 
coordinate frame. Each manipulator link has its own set of 
body axes. The axes for each link are attached at the point 
of rotation nearest the centerbody. The x axis points along 
the longitudinal axis of the link. The angles which describe 
link orientation are joint angles with two subscripts. The 
first subscript indicates which manipulator the link belongs 
to. The second subscript indicates the particular link of that 
manipulator. The links are numbered outward from the cen- 
terbody. The payload orientation is referenced back to the 
coordinate frame on the centerbody. The dual two-link 
manipulator case is shown in Figure 1. To eliminate gravity, 

FIGURE 1 .  Dual Two-Link Manipulator Case 

this two dimensional model is in the horizontal plane. The z 
axis is perpendicular to the plane of the motion. The gener- 
alized coordinates are 

r T T  ' = 1'0 ' L I  'LZ ' R I  ' R Z  'P 'l' '4 
They include centerbody attitude, left and right arm joint 
angles, payload attitude, and payload center of mass coordi- 
nates. Like the centerbody angle, the payload angle is refer- 
enced to an inertial coordinate frame. The mounting 
location for the left and right shoulders are given by the two 
constant angles e,, and eRO. The distances from the semi- 
inertial coordinate frame to the shoulders are 1 and lRo. 
Link lengths are designated as li. Distances to link centers 
of mass contain the letter c as a subscript. The control actu- 
ators for this system consist of a reaction wheel mounted on 
the centerbody and joint motors at the shoulder, elbow, and 
wrist of each manipulator. The resulting control input vec- 
tor is 

LP 

T 

u = [uwh uLs uLE uLw uRS uRE uRW] (2) 

The first element is the reaction wheel torque. The next 
three elements are the shoulder, elbow and wrist torques for 
the left manipulator. The final three elements are for the 
right manipulator. 

The equations of motion for this system are developed 
using Lagrange's equations for a dynamic system with holo- 
nomic constraints (Eq. (3)). The constraints are due to the 
geometry of the system. 

subject to the constraint equations Aq - + A o  = 0 
L = T - V  
T is kinetic energy 
V is potential energy 
- q are the generalized coordinates 
- q are the generalized velocities 
- Q are the applied nonconservative forces 

are the constraint forces 

Because of the closed chain nature of the system, the 
choice of generalized coordinates in Eq. (1) is not a mini- 
mum coordinate formulation. Consequently, the constraint 
forces (the last term in Eq. (3)) will be nonzero. 

Beginning with Lagrange's equation, the equations of 
motion can be rearranged into the alternate form 
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M is the inertia matrix. It is a function of the general- 
ized coordinates and can be found by expressing the kinetic 

The G matrix contains all of the centripetal and Coriolis 
terms. It is most easily found using the following equations 

energy in the form of Eq. (5). r 1 

M =  

For the dual two-link manipulator case shown in 
Figure 1, the inertia matrix is given by I I 

- 
M12 M13 M14 M1.5 

M,, M22 M ,  0 0 0 0 0 

M,, M 3 2 M 3 3  0 0 0 0 0 

M4, 0 0 M4,M4, 0 0 0 

0 0 0 0 O I , O O  

M,, 0 0 M,, M,, 0 0 0 

= M,l = M45+mR21R01CR2C0S ('R1 B =  

2 
M ,  = M~~ + zR1 + mR21R,lcR2coseR2+ mR1lcR1 + mR21il (IO) 

0 0 0 0 

0 0 0 0 0 O m p O  

(7) 

(8) 

2 
M55 = 'R2  mR21cR2 

M ,  = M,, = M,, + mR21R,IcR2cos0R2 
0 0 0  0 1 0 - 1  
0 0 0  0 0 1 - 1  
0 0 0  1 0 0  1 

where Ci;' is the jkth element in the ith C matrix. (6) 

The nonconservative forces, Q, may be expressed as the 
product of a control influence matrix and the input vector 
(Q = B u ) .  For the configuration of Figure 1 ,  the control 
influence matrix is 

1 0 0 - 1 0 0 - 1  lo 1 0 - 1  0 0  
0 0 1 - 1 0 0  0 

J 1 0 0 0  0 0 0  0 
0 0 0  0 0 0  0 

The constraints matrix, A, is derived by writing the sys- 
tem constraints in the Pfaffian form as 

The system constraints are those equations which 
describe the closed chain geometry of the system. For 
example, the dual two-link manipulator system is eighth 
order. Because this system has only four degrees of free- 
dom, an additional four equations are needed to describe the 
constraints. These equations come from geometric relation- 
ships describing the payload center of mass Cartesian 
coordinates in terms of the left and right arm generalized 
coordinates. 

Y p  = lLOsin (e, + e,,) + I , ,  sin (e, + e,,+ 
Because the generalized coordinate for the payload atti- - _ _  

tude is referenced to an inertial coordinate frame, the inertia + I,,sin (e, + e,, + e,, + eL2) + lcpsinep 

(24) 
matrix is decoupled between the payload and the rest of the 
system. Coupling does exist between the spacecraft center- 

xp = lRocos (eo + eROl + lR1 cos eRO + eR1) 

body and each of the manipulators. + iRZCOS (e, + eRO + eR1 + eR2) - (1, - IC,) case, 
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Y p  = lRosin (0, + e,,) + I , ,  sin (0, + €IRO + e,,) (25) 

+ IR2sin (0, + e,, + eR1 + e,,) - ( I p  - I C p )  sinep 

To get the Pfaffian form of Eq. (21), differentiate Eqs. 
(22-25) and rearrange terms. The following equations 
express the result. The constant term, A,, is a zero vector. 

-' 
-' 

0 0 A,,A,, A,, -1 0 

0 0 A,A4, A, 0 -1 

A,, = -lcpsinOp 

A,, = icpcosep 

A, = - (iP - icp)  cosep 

A,, = ( I p  - l cp )  sineP 

A45 = ~ R ~ C O S  (00 e,, + 0 ~ 1  

A, = A,, + I , ,  COS (0, + e,, + e,,) 
A41 = A44 + ~ R O C O S  (00 + 0 R O )  

A,, = -lR,sin (0, + e,, + e,, + e,,) 
A,, = A,,-I,, sin (0, + e,, + e,,) 
A,, = A34-1ROsin (0, + e,,) 

A23 = ~ L ~ C O S  (0, + eLo  + 0 L 1 +  0,r2) 

A,, = A23 + I , ,  COS (00 + 0 L o  + 0L1) 

A,, = + lL0COS (0, + OLO)  

A,, = -lL2sin (0, + e,, + eL,  + € I L 2 )  

A,, = Al3-lL1sin (e,+ e,,+ eL1) 
A, ,  = A12-lLOsin (0 ,+BL0)  

After substituting the matrix form of the generalized 
forces into the equations of motion, one has Eq. (43). 

(43) 

The inertia matrix, G matrix, B matrix, and constraints 
matrix can be found from the results of the previous section. 
If potential energy is also known, the only remaining 
unknowns in Eq. (43) are the generalized accelerations, the 
actuator torques, and the Lagrange multipliers. By using 
the equations of motion and the Pfaffian form of the con- 
straints, one can eliminate the Lagrange multipliers. The 
time derivative of Eq. (21) is 

A q + A q  - - = 0 (44) 

Solving Eq. (43) for 4 and substituting the result into 
Eq. (44) permits one to find an expression for the Lagrange 
multipliers. 

(45) 
1 T -1 A = ( A M-  A ( A M - ' ( G - B U )  - - A i )  - 

Eq. (45) can be substituted back into the equations of 
motion (Eq. (43)) leaving the generalized accelerations and 
the actuator torques as the only unknowns. As discussed in 
the next section, torques are found by means of inverse kine- 
matics. Once the torques are known, the equations of 
motion can be integrated to find the generalized coordinates 
as functions of time. 

If the motion of the system is to follow a prescribed tra- 
jectory, then the generalized accelerations at any point on 
that reference trajectory are known. Using reference trajec- 
tory displacements, velocities and accelerations in the refer- 
ence trajectory equivalent of the equations of motion and of 
the Lagrange multipliers allow one to solve for the actuator 
torques needed to produce the reference accelerations as fol- 
lows 

-A ' ) 
r e f l  ref 

After substituting Eq. (47) into Eq. (46), the terms can 
be rearranged to produce equations of motion in the form 

- .. av - 
M q  + G + - = B u  

- ref - ref 
a q r e f  

where 
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In this study, the total number of actuators is more than 
the system degrees of freedom. This situation is caused by 
the geometric constraints of multiple manipulators handling 
a common object producing an excess of actuators as com- 
pared to degrees of freedom. As a result, there are an infin- 
ity of solutions for the reference torques. One method to 
select a specific solution is to establish a cost function. An 
obvious cost function is to minimize a weighted norm of the 
actuator torques. 

1 
J =  -uT W U  (52) 2 -  ref u- ref 

The problem now becomes one of minimizing the cost 
function (Eq. (52)) subject to the constraint that the refer- 
ence equations of motion are satisfied (Eq. ( 4 8 ) ) .  Aug- 
menting the cost function with the constraint by means of 
another Lagrange multiplier leads to -.--I - av (53) 

a q r e f  

1 
J =  -uT W u 

2 - r e f  U - r e f  

The minimum of the augmented cost function is found 
by taking the gradient of Eq. (53) with respect to the refer- 
ence torques and with respect to the Lagrange multiplier. 
Each of the gradients is set to zero as follows 

- T  
V u  J = 0 = W,_U + B y  (54) 

V y J = O = B u  - - - - (55) 

- rc/ ref  

- - av 
a q r e f  

Equations (54-55) are two equations in two unknowns 
(y, tref). Eliminating y results in an expression for the ref- 
erence actuator torques. 1 (56) 

- r e f  

These values for reference actuator torques minimize the 
augmented cost function (Eq. (53)) at each instant in time. 

The equations of motion of the manipulator system are 
av 

M ; + G + -  - = B U + A ~ &  (57) 
- 

The constraints matrix satisfies 

A q + A ,  - = 0 (58) 

Differentiating Eq. (58) gives 

A q + A q  - - = 0 (59) 

Solving Eq. (57) for - 4 results in 

- ;i = M - ' ( B u + A ~ & - G )  - (60) 

Substituting Eq. (60) into Eq. (59) produces 

A ~ + A M - ' ( B ~ + A ~ & - G )  - - = o (61) 

Now solve Eq. (61) for & 
1 T - 1  & = - ( A M - A  ) { A q + A M - ' ( B u - G ) }  - - (62) 

Substitute Eq. (62) back into Eq. (60) and group terms 

(63) 

according to the form 

- q = C p +  czq + c3 
where 

(64) 

(65) 

(66) 

Similarly, the reference maneuver accelerations can be 

.' = c, u +cz q (67) 

where the "ref' subscripts on the C matrices indicate that 
reference maneuver values need to be used in their calcula- 
tion. Let error quantities between the actual variables and 
their reference maneuver counterparts be defined by 

69 = 9-qref  (68) 

69 = _4-iref (69) 

(70) 

1 T - 1  c, = M-' { z - A ~ ( A M -  A AM-' }  B 

1 T -1 c, = - M - ' A ~ ( A M -  A A 
1 T c, = ~ 4 - l  { A ~ ( A M -  A AM-' - 1 1  c 

expressed as 

q r e f  rej- ref  ref  + ' 3 4  

69 = j - -Iref  
Now define an error Lyapunov function as 

U = 0.5 (Si. - -  64) +f(6q) - (71) 

where f (6  - q )  2 0 . Differentiating Eq. (71) results in 

Let 
r 

Then Eq. (72) can be rewritten as 

U = S q .  - ( 6 q + F )  - -  (74) 

Substituting Eq. (63) and Eq. (67) into Eq. (70) and 
then Eq. (70) into Eq. (74) produces ' = 'i' [ ( c 1 ! - C 1 r e f i r e >  + ( c 2 i - c Z r e j r e >  

+ ( C 3  - . c 3 r e f )  +_F 1 (75) 
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If one lets the quantity inside the brackets of Eq. (75) 
equal -K v -  6 q where Kv. is a positive definite matrix, then 
one is guaranteed that U _< 0 and therefore the system will 
be stable in the Lyapunov sense. KY is assumed to be a 
diagonal matrix with generalized coordinate vector velocity 
gains on the main diagonal and zeros elsewhere. Solving 
Eq. (75) for command torques, - u , leads to t 

-u = c,t C - ~ v ' i  + ~ 1 ~ ~ : ~ ~ f - ( ~ 2 i  - c2retfire> 

- (C3 - qref) -_F  1 (76) 

Equation (76) finds the torques that should be used 
rather than the reference torques. C1 is an 8x7 matrix so 
C? is its pseudo inverse. All that remains is to choose a 

function for f ( S  - q)  . One can chose 

Kp has the same diagonal form as K, .  

(77) 

The reference trajectories describe the nominal path 
that the system follows in moving from the initial conditions 
to the desired final conditions. One need only specify refer- 
ence trajectories for as many generalized coordinates as 
there are degrees of freedom. The choice of which general- 
ized coordinates to specify is entirely arbitrary. A reason- 
able choice is any set which includes the payload 
coordinates and centerbody attitude since the user will prob- 
ably be especially interested in these coordinates. Any path 
which connects the associated endpoints can be a reference 
trajectory. Recall, however, that the usefulness of the refer- 
ence trajectories is to permit calculation of the generalized 
coordinates positions, velocities, and accelerations for use in 
the inverse kinematics calculations. To help ensure that the 
payload does not experience any unnecessary jerk, one 
might further constrain the path such that the velocities and 
accelerations are zero at the endpoints. Therefore, a conve- 
nient form for the reference trajectory is as a polynomial 
function of time. The user decides the maneuver duration 
in advance. The minimum order polynomial which satisfies 
the above boundary conditions is 

(78) f ( z )  = 6z5- m4+ 1 0 ~ ~  
where T is the normalized time. 

(79) 

Maneuver start and stop times are to and tfrespectively. 
The following equations illustrate how this fifth order 

0, ( t )  = ( 3 0 . ~ ~  - 6 0 ~ ~  + 3 0 ~ ~ )  (AQ,) 
ref 

1 
0, ( t )  = ( 1 2 0 ~ ~  - 180z2 + 602) (AQ,) 

ref 

Higher order polynomials can increase the complexity 
of the path but offer the advantage that an infinity of polyno- 
mial coefficients satisfy the position, velocity, and accelera- 
tion boundary conditions. This affords an opportunity to 
select the coefficients based on another optimization func- 
tion. Since a reaction wheel on the centerbody will be 
required to maintain spacecraft attitude, the reaction wheel 
torque history is a prime candidate for optimization. Possi- 
ble cost functions include the integral of the absolute value 
of reaction wheel torque or the maximum reaction wheel 
torque. 

tf 

or 

The system used to generate these results is a dual 2-link 
manipulator configuration. This system is restricted to 2-D 
motion in the horizontal plane to eliminate the potential 
energy term in Eq. (4). The system properties used for the 
simulations are listed in Table 1. 

Four cases are presented to illustrate the system dynam- 
ics and the effect of using a reference trajectory. In all cases, 
the initial conditions and desired final conditions of the pay- 
load are the same. The stick figure representation of Figure 
2 depicts the initial and final conditions of the desired 
maneuver. The triangle in the lower portion of the diagram 
represents the spacecraft centerbody. The five linked object 
with 0's at the joints represents the initial manipulators and 
payload geometry. The object with the X's at the joint rep- 
resents the desired final geometry. The desired maneuver is 
one in which the payload will rotate 90 degrees and its right 
endpoint will finish where the left endpoint started. All 
seven actuators are weighted evenly in the torque calcula- 
tions (Eqs. (52-56)) 

Polynomial reference trajectory would apply to the payload 
attitude generalized coordinate. 

(80) 

In the first simulation, the repositioning is done entirely 
by the Lyapunov controller without the benefit of a refer- 
ence trajectory. The behavior is that of a point controller A8, = Q, (tf) - 8, ( t o )  
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TABLE 1 .  

torque is quite high during the maneuver (Figure 5).  The 
oscillatory nature of the system is evident in the angular 
position and velocity plots. This behavior is also evident in 
Figure 6 which depicts the system geometry at  several 
instances during the maneuver. This controller also does a 
poor job of maintaining the centerbody attitude. This is 
clearly evident in Figures 3 and 6. The attitude error peaks 
at about 16 deg. 

1.6 

I .4 

I .2 

I .o 

Y (In) 0.8 

0.6 

0.4 
-e- Initid GeomUy 

0.2 

0 
-0.5 0 0.5 1 .o 

X (m) 

FIGURE 2. Desired Repositioning Maneuver 

Thetas vs Time 

200 1 

-200 
0 20 40 

-200 
0 20 40 

Time (sec) 

FIGURE 3. Lyapunov Point Controller Angles 

System Properties 

with an initial displacement rather than that of a tracking 
controller. Figure 3 presents the angular displacement his- 
tory. The asterisks on the right side of the plot indicate the 
desired final angles, Although the system is approaching the 
desired final geometry, it has not completely settled down 
even after 40 sec. Position errors are still present as well as 
nonzero velocities (Figure 4). Also, the reaction wheel 
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torques (Figure 10) are an order of magnitude smaller than 
in the previous case. More importantly, the centerbody atti- 

60 tude is maintained throughout the maneuver. Figure 11 
shows the time lapse depiction of the maneuver. 

ThetaDots vs Time 

40 

The third simulation uses an eighth order reference tra- 
jectory polynomial and the same maneuver duration of 10 

f ( ~ )  = 0 . 0 7 9 4 ~ ~  + 0 . 6 4 1 0 ~ ~  + 0 . 0 2 7 8 ~ ~  + 1 . 2 7 6 4 ~ ~  

Angle Rates 20 
(degkc) sec. The polynomial is 

0 

- 8 . 5 9 7 3 ~ ~  + 7 . 5 7 2 7 ~ ~  (86) 
The trajectories that result from this polynomial are shown 
in Figure 12. They lack the symmetry that the fifth order 

Time (sec) polynomial provided. Figures 13 through 16 indicate that 
the performance is still good. 

-20 

-40 
0 20 40 

FIGURE 4. Lyapunov Point Controller Angular Rates 
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Command Torques vs Time 
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Command 
Torques 
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n 6 HGURE 5. Lyapunov Point Controller Command Torques 0.5 I .n 0.5 1.0 n n 
T (*Cl T f W  

FIGURE 7. 5th Order Reference Trajectories 
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0 -100 

-150 
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FIGURE 6. Lyapunov Point Controller Time Lapse Stick Figure 
0 5 10 

Time (sec) 

FIGURE 8. 5th Order Angles 
The second simulation uses a fifth order polynomial ref- 

erence trajectory (Eq. (78)) applied to the payload general- 
ized coordinates. The payload coordinates displacements, 
velocities, and accelerations are depicted in Figure 7. The 
maneuver time was selected to be 10 sec. As is evident in 
Figures 8 and 9, the system successfully moves from initial 
conditions to desired final conditions. The command 
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ThetaDots vs Time - L o p  
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FIGURE 9. 5th Order Angular Rates 

0.10 

0.05 

Command 
Torques 0 
(N-m) 

-0.05 

1.6 

1.4 

1.2 

1 .o 

Y(m) 0.8 

0.6 

0.4 

0.2 

0 
-0.5 

Command Torques vs Time Command Torques vs Time 

-0.10 I I I 
0 5 10 

Time (sec) 

FIGURE 10. 5th Order Command Torques 
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FIGURE 12. 8th Order Reference Trajectories 

Thetas vs Time 
100 

50 

0 
Angles 

-loo r\ -j 
-150 

0 5 10 
Time (sec) 

FIGURE 13. 8th Order Angles 
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FIGURE 11. 5th Order Time Lapse Stick Figure 
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FIGURE 14. 8th Order Angular Rates 
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FIGURE 15. 8th Order Command Torques 
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FIGURE 16. 8th Order Time Lapse Stick Figure 

The fourth simulation is a modified Lyapunov controller 
and represents a compromise between the Lyapunov point 
controller and the two reference trajectory simulations. The 
command torques are calculated by zeroing the reference 
torque terms and using Eq. (76). The remaining reference 
trajectory terms are found using the fifth order reference tra- 
jectory. This case represents a controller analogous to a PD 
controller in that position and velocity errors are used to cal- 
culate the command torques. However, the gains are not 
constant because they are calculated from time varying 
matrices. As Figures 17 through 20 indicate, the perfor- 
mance of the modified Lyapunov controller is better than the 
Lyapunov point controller. The command torques are an 
order of magnitude smaller. This is directly attributable to 
using intermediate reference points on the way to a desired 
final state rather than attempting to achieve the desired final 
state all at once. Despite this dramatic improvement, perfor- 
mance is not as good as the reference trajectory simulations. 
The modified Lyapunov controller simulation takes longer 
to settle into the desired final state and produces an 
unwanted centerbody rotation (see Figure 20) of 1.2 
degrees. On the other hand, the modified Lyapunov control- 
ler maintains stability. 

Thetas vs Time 

200 , 
100 

0 

A- & 

-200 ' I I 
0 20 40 

Time (sec) 

FIGURE 17. Modified Lyapunov Controller Angles 
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FIGURE 18. Modified Lyapunov Controller Angular Rates 
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FIGURE 19. Modified Lyapunov Controller Command Torques 
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Comparing the values produced by integrating the abso- 
lute value of the reaction wheel torque (Eq. (84)) for the four 
simulations provides a means to distinguish between the 
cases. A second metric is the absolute value of the maxi- 
mum reaction wheel torque (Eqn 85). Another obvious 
choice is to bound the centerbody attitude error during each 
simulation. The results are summarized in Table 2. Clearly 
the point controller is the worst controller based on all three 
metrics. The difference between the fifth and eighth order 
tracking controllers is only slight. 

Centerbody 
Attitude 

Error (deg) 

including the polynomial trajectory in the first place. The 
minimal improvement achieved by increasing the order of 
the polynomial probably doesn’t warrant the additional 
computational expense. 

[31 

[41 

Modified Tracking 
Controller 

2.4523 1 0.3950 I 1.1910 

TABLE 2. Comparisons of Simulations 

[71 

This paper addresses the problem of repositioning a pay- 
load that is grasped by multiple manipulators mounted on 
the same free floating base. The closed chain nature of the 
problem allows for an infinite set of joint actuator torques to 
accomplish the maneuver. This paper presented a technique 
whereby a weighted norm approach selects a torque profile 
to use. Use of polynomial reference trajectory significantly 
improves the performance of the system. As the order of 
the polynomial increases, the redundancy of the coefficients 
can be used to select values that lead to reduced centerbody 
attitude disturbance. The biggest improvement is from 
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