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Abstract 

A new approach for spacecraft maneuver based upon 
constraint dynamics and tracking control laws is pre- 
sented in this paper. For high precision pointing re- 
quirement on spacecraft maneuver, a desired trajectory 
is prescribed upon which a constraint dynamic system 
is constructed. A reference model system governed by 
constraint force is used to build the associated control 
laws for actual system. Simulation results for single 
axis slew maneuvers show that this approach can be 
used for a spacecraft mission with high pointing accu- 
racy requirement. 

I. Introduction 

Spacecraft maneuver issues have received significant 
amount of attention during the past few decades. A 
number of different control law design approaches have 
been suggested to satisfy various mission objectives. 
As the recent trends require high precision pointing 
accuracy, more sophisticated control laws have been 
considered as being mandatory. One of the key issues 
in the recent spacecraft maneuver is the embedded 
flexibility of the spacecraft. Flexibility effect has the 
dominant effect on the performance of the maneuver 
and associated control laws. Design of control strategies 
for spacecraft maneuver with flexibility effect usually 
raises challenging technical issues. 

In this paper, we present flexible spacecraft maneu- 
ver problem with prescribed motions which represent 
the desired mission, i.e., spacecraft trajectory. This ap- 
proach is essentially close to the so-called inverse dy- 
namics In inverse dynamics approaches, 
the desired trajectory of a system is determined a p r i -  
ori, aiid the control law is obtained in such a way 
that the control law, when applied to the actual sys- 
tem, produces the desired trajectory. In robotics area, 
the inverse dynamics method has been used for various 
purposes.'-' The nature of the inverse dynamics solu- 
tion is essentially open loop and creates the potential 
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stability problem. For spacecraft , especially flexible 
spacecraft maneuver, this approach can be applied to 
a situation where the accurate pointing maneuver is 
demanded. For instance, for an on-board antenna or 
some other parts of spacecraft to follow a prescribed 
path, the inverse dynamics approach can be used more 
effectively than typical forward dynamics method. 

For a highly flexible spacecraft, the pointing accu- 
racy is limited by the inherent flexibility of the struc- 
ture. If the prescribed path is generated in such a way 
that the flexibility effect is minimized over the maneu- 
ver, then the control law corresponding to the reference 
maneuver produces a smooth trajectory with less flexi- 
bility effect. 

In this study, a prescribed path is introduced in the 
form of constraint dynamics in conjunction with the La- 
grange multiplier. The constraint equation is, in gen- 
eral, a holonomic form such as linear displacement and 
velocity constraints. The constraint system used as a 
model system satisfies the constraint equations exactly. 
The input to  the model system is a constraint force 
developed from constraint equation and the Lagrange 
multiplier. Two different approaches are investigated 
to develop control laws based upon the model system. 
In the first case, direct matching between constraint 
force and actual control force is sought in an effort to 
produce actual control input. In other words, the con- 
straint force which is the input to the model system is 
set equal to the actual desired control force. The so- 
lution is open loop, and obtained in the least square 
sense usually when the number of states are greater 
than number of control inputs. In the second case, the 
model system generated by constraint equation is used 
to develop a tracking control law. The control law is 
constructed in such a way that the error energy between 
model system and actual physical system is decreased. 
This approach is more attractive than the first approach 
in the sense that the control law maintains stability of 
the system. 

This paper consists of two main parts. In the first 
part, a flexible spacecraft model is introduced together 
with the reference system generated. Analytical solu- 
tion for the constraint dynamics is sought as an analyt- 
ical expression in terms of the Lagrange multiplier. In 
the second part, control laws are designed based upon 
the constraint dynamics system created in the first part. 

11. Problem Definition and Model Systein 

The physical model used in this study is presented 
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in Fig. 1. It represents a spacecraft with a rigid main 
body and two identical flexible structures attached to 
the main body, and each flexible strucuture has an 
antenna at the tip. For simplicity of analysis, the 
system is modified into the model in Fig. 2, where 
the truss structures are modeled as beams with tip 
masses attached. The flexible beams are under bending 
vibration and assumed to satisfy Euler-Bernoulli beam 
assumptions. The only control device is a reaction 
wheel located at the center body. As a particular 
case, the motion of the whole structure is restricted to 
a plane motion creating couplings between the center 
body motion and vibration of the appendages. This 
model is similar to the one that has been used in the 
previous ~ t u d i e s . ~ - ~  

For a single axis slew maneuver, the governing lin- 
earized ordinary/partial differential equations of motion 
are given in the f ~ r m ~ - ~  

= u  
a4 Y 

p(ji + z;) + E I T  = 0 (1) 8 X  

with the boundary conditions 

where ( )’ &( ), IC is moment of inertia of center 
hub, mt tip mass, It moment of inertia of tip mass, 
p linear mass density of the beam, EI elastic rigidity 
of the beam, u applied torque, lo  center body radius, 1 
total undeformed length of the structure, and 0 is center 
body angle. In addition, as shown in Fig. 2, the two 
beams are assumed to be in anti-symmetric deformation 
so that there is no net translational force generated at 
the center body. 

Next, for the above structural system, a desired tra- 
jectory is prescribed. As a particular case, it is assumed 
that the motion of the tip is desired to follow a certain 
path with respect to time. This statement, however, 
covers a rather general class of pointing problems by 
prescribing trajectories of some parts of the spacecraft. 
In our case, the tip motion is prescribed by the following 
equation. 

Y( i ,  t )  + q t )  = ~ ( t )  (2) 

where c(t) is a trajectory generated in such a way 
that the resulting motion is as smooth as possible. In 
this study, c(t) is generated by piecewise continuous 
smooth polynomials in time. This is motivated by a 
near-minimum-time rigid body maneuver in the recent 
studies by Junkins e t .  al.3-4 Figure 3 shows c(t), a 

Figure 3 Prescribed tip trajectory 

smooth trajectory with insignificant flexibility. Even 
if y( l , t )  + l 0 ( t )  does not have physical meaning, it 
dictates the overall motion, i.e., both rigid and flexible 
motion of the tip. In the previous studies, the same 
parameter has ‘been used as a reference trajectory.’-’ 
As mentioned earlier, the model system should be 
generated first , which satisfies the constraint equation. 
In order to make use of the standard approach for 
constraint dynamics, first we discretize the original 
equation, Eq. (l),  into a finite dimensional ordinary 
differential equations. For finite approximation, the 
following expansion is introduced 

N 

(3) 
i=l  

where b,-(z) is the i - th shape function which satisfies 
both geometrical and natural boundary conditions5 
By applying the Lagrange’s equations by taking 
0, q1 , 772, .  . . , VN as generalized coordinates with intro- 
duction of Eq. (3), we obtain 

o2  where 77 = [ q l , q 2 ,  .. .,fp,rIT and ( )” = s( ). In 
addition, each sub-matrix is defined as follows 
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111. Control Law Design 
I 

In this section, the model system, i.e., the virtual 
system subject to constraint force as in Eq. (10) is 
used to design control laws for the actual system. Two 
different approaches-direct matching and tracking law- 
are investigated. 

Kvv = io EId:(z  - lo)q$'(z - lo)dz 

where i , j  = ' y 2 ,  * * * ' N *  On the Other hand, the 
constraint equation can be rewritten as 

Aq = c ( t )  (5) 

where 

and L = 1 - l o .  For notational simplicity, Eq. (4) is 
rewritten in the form 

M q +  Ii'q = Fu (6) 

where M is a mass matrix, Ii' is a stiffness matrix, and 
F is an input distribution matrix. In order to generate a 
model system, which satisfies the constraint equation, 
Eq. (5), we assume a model system being subject to 
a constraint force. In other words, by excluding the 
control force, the governing equation for the model 
system is 

(7) 
where X is a Lagrange multiplier, ATX is a constraint 
force, and ( ), is introduced to denotes states cor- 
responding to the model system. Also, the constraint 
equation, Eq. (5), can be rewritten as 

Aqm = c ( t )  (8) 

From Eqs. 
analytically obtained in the form6 

(7) and (8) the Lagrange multiplier is 

(9) 

where 

A = A M - ~ A ~ ,  
d2 
dt2 

a( t )  = - c ( t )  

By substituting Eq. (9) into Eq. (7), the new system 
is obtained as 

where 

Therefore by eliminating the Lagrange multiplier, we 
obtain a new stiffness matrix, I?. The property of 
the new stiffness matrix is dependent upon the con- 
straint equation, A. It is worthwhile, as will be shown 
later, to note that q, is governed by the new stiffness 
matrix(I?). In other words, the natural frequency has 
been changed due to the introduction of the Lagrange 
multiplier. 

a). Direct matching armroach 

In the direct matching approach, the model system 
developed in the previous section is used to find the 
actual control law so that the actual control input 
matches the constraint force in the model system. The 
control action is taken in a manner to generate the 
constraint force which is evidently related to the desired 
path constraint. If there exist an exact solution, then 
control input satisfies the constraint equation exactly. 
For the actual system in Eq. (6) 

MG + Ii'q = Fu  

by using Eq. (7), we seek to find a control input u which 
matches the constraint force as follows 

F u  = ATX 

Exact solution for the above equation mainly depends 
on the size of F .  In general, F is not invertible due 
to the number of controls usually less than number of 
states. A possible solution is found in the least square 
sense as follows 

where F t  is the generalized inverse of F and G1,Gz 
are feedforward gains. As we can see, the control input 
consists of two parts: one from qm and the other one 
from a@). Upon substituting Eq. (11) into the actual 
system, it follows that 

Mq + It'q = FtATX 

where F = F F t .  By eliminating A,  the above equation 
can be rewritten as 
M q + K q  = F A T k ' A M - l  Ii 'q,+FATi-la(t) (12) 

The actual system is driven by combination of both 
q, and a ( t ) .  As discussed earlier, the model system 
q, is dictated by a new system with a new stiffness 
matrix as Eq. ( lo) ,  which excludes the possibility of 
resonance between model system and actual system. 
Both Eqs. (10) and (12) are combined together to 
produce an actual system and the associated model 
system. For actual implementation of this approach, 
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the model system in Eq. (10) should be solved either 
on-line or off-line basis. 

b). "racking control law 

The possible disadvantage of the previous direct 
matching method is due to the nature of the open con- 
trol law with lack of stability guarantee. The model 
system is built upon zero initial condition assumption 
which is not perfectly guaranteed in the actual physical 
system. In this approach, we seek to design a stabi- 
lizing control law by Lyapunov approach. A candidate 
Lyapunov function is chosen as 

1 1 1 U = - e T M e  + -eTI<e + -eT&. 
2 2 2 

where e = q - qm, and Q is a positive definite matrix. 
Obviously the Lyapunov function U is positive definite 
and represents an error energy between the model sys- 
tem and the actual system. Taking time derivative of 
U in combination with Eqs. (6) and (7) yields 

For stability in the Lyapunov sense, the control law is 
chosen to satisfy 

where Q is a positive definite matrix. The control input 
u, similar to the previous section, is obtained in the 
least square sense as follows 

where Gi(i = 1, ..., 4) are feedback/feedforward gains. 
In comparison with the direct matching law of Eq. 
(ll), the control law consists of both feedback and 
feedforward terms. The actual closed loop system 
applied by the control law has the form 

Mq + 2Qq + [I< + FQ]q = FQqm + FQqm + FATX 

where X should be replaced body the expression in Eq. 
(9) so that the right hand side of Eq. (15) consists of 
qm and u ( t ) .  It should be noted that the above closed 
loop system has some margin for stability guarantee 
in the sense that FQ 2 0 in this special case. The 
stability of model system in Eq. ( lo) ,  however, is 
not guaranteed since the modified stiffness matrix(li') 
does not introduce any damping effect. The constraint 

(15) 

equation usually makes l? marginally stable, and this 
should be regarded as a potential problem in the actual 
implementation. Furthermore, it is assumed that the 
generalized coordinate vector(q) in Eq. (15) can be 
estimated using a dynamic estimator in real time. 

Two independent control laws, Eqs. (11) and (14), 
are applied for the simulation purposes. The feed- 
bacl</feedforward gains associated with the control laws 
of Eqs. (11) and (14) are provided in Table 2. The 
feedforward gains for the center body angle is identi- 
cally zero which can be explained by the fact that there 
should be no stiffness effect on the hub motion. 

Simulation results based upon the control law of Eq. 
(11) are provided in Fig. 4. Both identical and different 
initial conditions between the model system and the 
actual system are examined. With the same initial 
conditions, in spite of the errors caused by the least 
square solutions, the Constraint equation is satisfied 
with enough accuracy. The applied control input is 
also presented in Fig. 4. The vibratory motion of 
the control input is observed and it turns out that 
the motion is dominated by the first natural frequency 
of flexible modes. The constraint equation where the 
motion was defined to be a pure rigid motion produces 
the vibration in the control input. Also, the error in the 
least square solution may result in some discrepancy 
between constraint trajectory and resultant trajectory. 
On the other hand, when there exist initial condition 
error in the actual system, the pointing error is not 
controlled. This is evident from the nature of the 
control law in Eq. ( l l ) ,  which is open-loop type with 
no feedback on the error. 

Simulation results with the control law of Eq. (14) 
are also provided in Fig. 5. Similar performance of the 
control law as the previous control law is shown with 
satisfactory tracking accuracy. The slight overshoot of 
the response is caused by the high position feedback 
gain, in combination with the approximate solution of 
the generalized inverse, for which the exact solution is 
not available. As discussed earlier, the control law of 
Eq. (14) has some advantages over the control law of 
Eq. (11) in the sense that the control law is a feedback 
law. As is shown in Fig. 5, the initial error on the 
actual system is controlled in this case. It is worthwhile 
to note that the control input fluctuation level is less 
than that of control law in Eq. (11). 

For further verification of the proposed method, a 
sinusoidal reference motion is tried as. 

N 
a(t)  = Nsin(wt), c(t) = - [t - si?z(wt)/w] (16) 

W 

where w = lOrad/sec and N is a constant. Simulation 
results with the above reference trajectory applied are 
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presented in Figs. 6 and 7. Similar trends are observed 
in comparison with the Figs. 4 and 5. This demon- 
strates the possibility of applying the proposed method 
to a general class of reference motions. 

V. Conclusions 

Application of constraint dynamics has been made 
to design control laws which satisfy the constraint equa- 
tion in least square error sense. The suggested approach 
provides us with a direct path to creating a model sys- 
tem and designing a tracking control law in conjunction 
with the model system and the actual system. Simula- 
tion results support the useful aspects of the method. 
It is expected that the approach herein can be extended 
into a large class of spacecraft maneuver applications in- 
cluding general nonlinear three axis maneuvers. For ac- 
tual application, however, it requires further study, es- 
pecially, concerning on-board processor capability and 
stability of the system with constraint. 
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Table 1 Space structure model parameters 

PARAMETER SYMBOL VALUE 

Center body radius 

Center body inertia 

Mass density of beams 

Elastic modulus of beams 

Beam thickness 

Beam height 

Beam length 

Tip mass 

Tip inertia 

10 

I C  

P 

E 

t 

h 

L ( r  1 - l o )  

It 

mt 

3.504 in 

9.061 oz-sec2-in 

0.003 oz-sec2/in2 

1 6 1 . 6 ~  106 oz/in2 

0.118 in 

5.94 in 

47.568 in 

0.156 oz-sec2/in 

0.0018 oz-sec2-in 

Table 2 Feedback and feedforward gains 

GI( x lo5)=[ 0.0000, 0.0029, -0.1055, 0.6119, -1.8871, 

4.1547, -7.9143 ] 

G2= 16.458 

G3= [ 1000, 0,  0, 0, 0, 0, 0, 0 ] 

Gq= [ 1000, 0,  0, 0,  0, U, 0,  0 3 
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Figure 1 Flexible Spacecraf t  Configuration 

Figure 2 Simplified Model w i th  Unsymrnetr ic  Motion 
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Figure 4 Simulation results with direct matching control law 
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Figure 5 Simulation results with feedback tracking control law 
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Figure 6 Simulation results with direct matching control law and 
sinusoidal reference trajectory 

2 4 6 8 10 

Time(sec) 

500 

2 4 6 8 10 -500 
0 

Time(sec) 

4 6 8 10 0 
0 2 

10 

Time(=) 

Figure 7 Simulation results with feedback tracking control law and 
sinusoidal reference trajectory 
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