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Abs t r ac t  

In this paper, a modified positive position feedback 
compensator design is presented for vibration control of 
flexible structures. The new method provides extended 
capability of controlling structural natural frequencies 
and damping. A similar compensator design where only 
rate sensors are available is also discussed. Ahalytical 
and experimental results are presented to  verify the 
proposed method. 

I. In t roduc t ion  

Vibration control of flexible structures using second 
order compensators has been extensively discussed in 
the previous The use of dynamic compen- 
sators in structural vibration control has wide appli- 
cations, especially, to  feedback stabilization of flexible 
structural systems. The direct velocity feedback is an 
explicit method of increasing damping by active con- 
trol actions5 The main difficulties in the direct veloc- 
ity feedback are the finite actuator dynamics and high 
frequency input signals which produce unbounded fre- 
quency responses. On the other hand, the compensator 
design of Ref. [2] the so-called Positive Position Feed- 
back(PPF) is closely connected to the direct velocity 
feedback technique. It is truly a PPF  only when the 
cornpensator frequency equals the vibration frequency. 

It is generally recognized that the P P F  has some 
advantages over the direct velocity feedback, especially 
when the actuator dynamics are considered. Also, the 
frequency response for the PPF,  which is essentially 
based upon a second order low pass filter, is more stable. 
The stability condition in the PPF  turns out to be in- 
dependent of modeling uncertainties such as structural 
damping and actuator dynamics. One disadvantage of 
the P P F  is the limited number of design parameters 
since the only control variable is the damping of the 
system. This is also true for the direct velocity feedback 
on the assumption that the velocity is the information 
available from the sensors. In general cases, it is 
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necessary to have control over the both damping and 
stiffness of the system for high damping and increased 
bandwidth of the response. For structures with quite 
low natural frequencies314, it is not sufficient simply to 
increase damping irrespective of the undamped natural 
frequencies. 

The system responses are governed by both damp- 
ing and stiffness of the system. Therefore, the design re- 
quirements are usually specified in terms of both damp- 
ing and natural frequencylbandwidth of the closed- 
loop system. In this study, the P P F  based upon com- 
pensators is generalized to accompany modifications in 
stiffness as well as damping of the closed-loop system. 
The key idea of this approach is to directly utilize the 
position information from the sensor to build the as- 
sociated control law. Since the P P F  makes use of the 
compensator output which is usually provided by a po- 
sition sensor output, the original position information 
is lost when it is transformed into velocity information. 
In the new approach, both the original position output 
from the sensor and the compensator output are com- 
bined into the feedback control law in the general form. 
This new approach enables us to have more flexibility 
in deciding desired closed-loop responses by increasing 
number of design parameters, i.e., feedback gains. More 
feedback gains imply more design freedom for optimal 
performance of the system. 

Also, another new approach, which uses rate sen- 
sor information instead of position sensor, is developed 
with a stability criterion. In this control law, the rate 
sensor output is directly utilized to  increase closed-loop 
damping, and it is fed into a compensator so that the 
compensator output contribute to increase stiffness of 
the system. The controlled performance of the new ap- 
proach turns out to be essentially same as the PPF  
scheme. Both methods provide stabilizing feedback 
control laws subject to stability constraints and the 
flexibility of deciding dynamic characteristics via an in- 
creased number of design parameters. Depending upon 
the availability of sensors and the difficulty of imple- 
mentation, either approach can be chosen to achieve 
the equivalent control objective. 

Experimental demonstrations are performed to ver- 
ify the proposed method. Actual implementation of the 
control laws are made by digital compensators. 

11. Prob l em Descript ion 

For general second order vibrational systems, the 



linearized equations of motion are described as 

where M is the mass matrix, I< stiffness matrix, q 
generalized coordinate vector, F input influence matrix, 
and y is the measurement vector with output matrix L. 
The above equations, by introducing modal damping, 
can be rewritten in terms of modal coordinates as 
follows 

where ( is modal state vector of length N,, and @ is a 
modal matrix which satisfies 

and 

R G modal frequency matrix(N, x N,) 

D modal damping matrix(N, x N,) 

where wi is i-th natural frequency and Ci is the i-th 
modal damping ratio. The control law design consists 
of finding the stabilizing input u as a function of either 
the sensor output(y) or the system state variables(q, q) .  
One of the useful structural control law design methods 
is the direct use of the sensor output for the actuator 
input. In other words, 

where G is a gain matrix of appropriate size. 
For a collocated rate sensor, the above equation can 

be rewritten as5 

For a positive definite gain matrix(G > O), the above 
control law stabilizes the system, decreasing the follow- 
ing Lyapunov function 

hence, 
u = - G ~ F G F ~ ~  < o (6) 

One of the key advantages of the above control law 
for the collocated actuator/sensor pair is the guaran- 
teed stability in the presence of modeling uncertainties 
and nonlinearites. However, in the direct velocity feed- 
back law, precise measurement of velocity is needed for 
closed-loop stability. In addition, neglected actuator 
dynamics can cause instability of the closed loop sys- 
tem under the direct velocity feedback1. 

In the usual digital control systems, when a velocity 
sensor is replaced by a position sensor, the following 
approximation is used 

where s is the Laplace operator and T is a small 
number. The stability guarantees are also affected by 
possible phase lag created in the closed loop. Therefore, 
the direct velocity feedback needs to be implemented 
cautiously. 

On the other hand, in practical application, the ve- 
locity information is not easily available compared to 
other variables such as position and acceleration. For 
the case where a position sensor is used, the velocity in- 
formation can be estimated. The finite difference tech- 
nique is not attractive enough from the stability and 
noisy signal viewpoint. Analog compensators, which 
can estimate velocity information from position input, 
are generally preferred over the finite difference method. 
In some recent studies, analog compensators(or called 
tuning filters) are used to control vibration of flexible 
structures1-4. 

111. Compensator Design using Position 
Information 

In this approach, the available sensor output is 
limited to  position information. The recent use of 
active structures as sensory systems supports the idea 
of position/strain sensor as a reasonable choice. One of 
the popular methods, which has been reported in some 
recent literature, is so-called Positive Position Feedback 
(PPF)1-4. Active damping action can be attained 
by introducing a compensator which converts position 
from a sensor into velocity so that the compensator 
output can be used as a control variable . 

As in the most previous approaches, a special case 
of collocated sensor/actuator pair is assumed for many 
reasons. The measurement equation for a collocated 
position sensor is given by 

Previous PPF Approach 



The original PPF  developed by Fanson and 
Caughey2 is stated in the form 

where the 77 is the compensator state vector of length 
Nf, C is the distribution matrix related to  F ~ @  de- 
pending upon the number of actuators and number of 
modes to  control, and G is a diagonal feedback gain 
matrix as follows 

G G diagonal gain matrix(Nf x Nf)  

In addition, a, and D, are the corresponding compen- 
sator rnodal frequency and modal damping matrices, 
respectively. In order to achieve maximum damping ef- 
ficiency, the compensator modal frequency matrix Rc 
is selected to match with R,  i.e., the modal frequency 
matrix of the system. The above control law is veri- 
fied both analytically and experimentally in the original 
work.' Furthermore, recent studies in Ref. [3-41 applied 
the same control law to a very low frequency system. 
The results indicate that significant amount of active 
damping is achievable by PPF.  

The stability of the above system in Eq. (9) is 
not guaranteed, however. The closed-loop stability is 
subject t,o system dynamics and the feedback gains. 
Ref. [2] presents a stability condition for the PPF  as 

where the inequality denotes positive definiteness of a 
matrix. It is noteworthy that the stability condition 
does not include the damping matrix of the structure, 
which usually represents an uncertainty factor. In spite 
of the stability constraint, the PPF  is generally recog- 
nized as being robust, useful, and easy to implement. 

One disadvantage of the PPF ,  however, as men- 
tioned earlier, is the lack of control over the stiffness 
of the system. The output from a position sensor is 
not included in the control law. In order to  change the 
stiffness as well as the damping, it is necessary to in- 
corporate position output into the control law. This 
improves dynamic response, i.e., the bandwidth of the 
closed-loop systen~, especially for a low frequency sys- 
tem as in Ref. [3-41. 

Modified PPF 

Mot,ivated by the original PPF,  we propose a new 
generalized PPF  as follows 

where the new positive definite feedback gain matrix Gp 
is introduced to make use of the direct output from the 
position sensor. Hence, the new control law makes use 
of both compensator output(q) and sensor output(E) to 
build a generalized control law. The stability condition 
for the new system in Eq. (11) can be derived in a 
similar way to the criterion in Eq. (10). By defining a 
new modal frequency matrix as 

the new stability condition is dictated as 

The most significant difference between the two crite- 
ria in Eqs. (10) and (13) is that the modal frequency 
matrix R is replaced by a new matrix a. As long as 
the feedback gain matrix Gp is positive definite, the 
modified modal frequency matrix fi is guaranteed to be 
positive definite. For a collocated sensor/actuator sys- 
tem, the new feedback gain matrix Gp contributes to 
modifying the undamped frequencies of the system. In 
addition, the stability region prescribed by the inequal- 
ity condition in Eq. (10) is extended by the additional 
feedback action, which resulted in the new modal fre- 
quency matrix fi. 

The closed-loop system which includes system dy- 
namics and the compensator is represented in the form 

0 I 0  
& {:} = [-R- c ~ G p c  -D CTG 
dt J 0 0 0 I 

Q , c 
(14) 

The above equation, for notational simplicity, is written 
as 

x = Ax, for X(O) (15) 

and the feedback gains in the stability condition, Eq. 
(13), satisfy 

where X i  is the i-th eigenvalue of the closed-loop system 
matrix A. It is evident that the new modified PPF  
provides us with increased flexibility in deciding closed- 
loop eigenvalues. The number of design parameters, 
i.e., feedback gains, is increased to  the size of closed- 
loop matrix A. For optimization of feedback gains, 
the new approach with an increased number of design 
parameters is an attractive choice compared to the 
original PPF.  

IV.  C o m ~ e n s a t o r  Design using R a t e  Informat ion  



Another control law, which is essentially similar to 
the PPF,  can be derived when only rate sensors are 
available. The measurement equation for collocated 
rate sensors is described as 

Using the above measurement equation, and motivated 
by the PPF,  we suggest the following compensator 
based closed-loop system. 

where G is a diagonal gain matrix as in the previous 
section, and G, is a positive definite gain matrix. AS 
can be shown, the output from rate sensors is directly 
incorporated into the rate feedback form. In addition, 
the rate sensor output is adopted as an input to the 
compensator, so that the compensator output is used to 
change the stiffness of the closed-loop system. Thus, the 
above control law has a close connection to the previous 
modified PPF  method in the sense that one can control 
both damping and stiffness of the system. The stability 
condition for the above control law is described as(see 
Appendix) 

where t) is a closed-loop damping matrix 

The new stability criterion is significantly different from 
the one for PPF  in Eq. (8). The system damping ma- 
trix and stiffness matrix of the compensator are intro- 
duced into the criterion. From robustness viewpoint, 
the previous PPF  is better than the approach suggested 
herein. Two sets of feedback gain matrices(G, G,) are 
used as design parameters. In addition, the stability 
condition is dependent upon the damping matrix which 
raises a robustness issue. By assuming relatively small 
size of the modal damping matrix, D ,  of the system, 
the stability condition is mainly dictated by C, G,, and 
the modal damping matrix D, of the system. Hence, 
the robustness issue arising from the stability condition 
is minimized by incorporating direct velocity feedback 
into the feedback on the compensator output. 

The above control law is simplified into a direct 
velocity/rate feedback when the compensator dynamics 
is eliminated. As the velocity/rate feedback gain G, 
increases, the stability of the system is assured in 
proportion. This exactly matches with the modified 
PPF case, where the feedback gain matrix G, plays the 
role of extending the stability region. 

Depending upon the outputs available from sensors, 
one can use either the modified PPF or the alternative 
method suggested in this section. 

V. Application 

AnaIy tical Resul ts  

Applications of the new control laws are made for a 
model system. A simple cantilevered beam in Fig. 1 
is adopted as a model system, and the mathematical 
modeling was formulated by the finite element method. 
Three sets of piezoceramic sensor/actuator are assumed 
to be placed along the beam axis. The control objective 
is to control three modes, and three sets of second 
order compensator are designed. The modal damping 
ratio of the system is assumed to be 0.3% while the 
corresponding damping ratio for the compensator is 
chosen to be as high as 100%. 

actuator  te++ sensor 

Figure 1 A cantilevered b e a m  model 

Based upon the model system and sensor/actuator 
setup, the closed-loop eigenvalues of the system are 
computed, and compared for the each control law. The 
results using position sensor output are presented in 
Table 1. As is shown in the table, the original PPF  
produces an unstable closed-loop system in accordance 
with the stability condition in Eq. (10). This instabil- 
ity is caused by the attempt to add too much damping 
just by using compensator output. Next, by the mod- 
ified PPF  which includes direct feedback on the posi- 
tion sensor output, the system is stabilized. In this 
case, the stability condition in Eq. (13) is satisfied by 
a modification of modal frequency matrix, which, in 
turn, increases the bandwidth of the system. The new 
feedback law, therefore, not only increases the stiffness, 
but also extends the stability region in this example. 
The new compensator is more effective than the origi- 
nal approach since one can control both damping and 
stiffness simultaneously, while the stability of the sys- 
tem is maintained. 

Similar results using the control law of Eq. (12) 
are presented in Table 2. The instability, once again. 
is caused by the feedback on the compensator output 
only. Stability of the closed-loop system is achieved by 
making direct use of additional velocity feedback action 



1 on the sensor output. In order to increase the stiffness 
of the system, the feedback gains on the velocity as 
well as the compensator output should be adjusted 
simultaneously. 

Exnerimeri ta l  Resu l t s  

The previous analysis is further extended into exper- 
imental demonstrations. The experiment is limited to 
the PPF  and modified P P F  only since the sensor type is 
a position sensor. The experimental set-up is presented 
in Fig. 2. This Flexible Spacecraft Simulator(FSS) 
has been used for different applications of spacecraft 
maneuver and vibration control e ~ ~ e r i m e n t s ~ - ~ l ~ .  The 
main centerbody is attached to a flexible beam which 
represents a space antenna. The centerbody which is 
free to rotate on the airpads is fixed in this experiment 
to examine vibration control capability. 

The flexible arm supported on the two airpads has 
its first mode natural frequency as low as 0.15Hz. 
The sensor and actuator used in this experiment are 
piezoceramics attached t o  the root of the beam as 
shown in Fig. 3. They are nearly collocated in order 
to prevent possible phase reversals between the sensor 
and actuator. The piezoceramics, when used as an 
actuator, produces bending moment over the element 
where the actuator is attached. On the other hand, 
when used as a sensor, it produces a voltage signal 
which is proportional t o  the charge developed over the 
piezoceramics, and thus to the strain of the sensor, 
which characterizes the sensor as a position sensor. The 
piezoceramic has been used to a large extent in the 
recent s t ~ d i e s l - ~ .  

The compensator used in this study is a set of second 
order low pass filters described as 

where the parameters(w,, () are selected to  produce 
maximum damping capability - the essential nature of 
tuning filters. For implementation of real time control, 
finite discretizations of the filter are achieved by one of 
the matching techniques called backward difference7 

where z is the z-transform variable, and T is the sam- 
pling rate. Therefore, the digital compensator equiva- 
lent of Eq. (23) can be rewritten as 

The overall control block diagram including direct po- 
sition feedback and compensators is presented in Fig. 
4. A first order filter for the sensor output as in Fig. 4 

is used to account for the phase lag of the output due 
to  the discharge of piezoceramic when it is subject to 
low frequency excitations. 

where the filter parameters(&, p) are obtained experi- 
mentally. 

Figures 5 and 6 show the results of the first mode 
control. Both natural vibration and vibration with ac- 
tive control are displayed. The original P P F  is applied 
to  control the first mode. It is shown that the active 
damping action is effective suppressing the vibration. 
Then, a modified P P F  control action is examined to 
control the first mode. The results are provided in Fig. 
6. 

Figures 7 to  10 present results for both first and sec- 
ond modes excitation. Two independent digital tuning 
filters are generated and linearly combined into the nec- 
essary control input. The combinations should be made 
within the stability conditions in Eqs. (10) or (13). Fig- 
ure 7 shows the case with the first mode tuning filter 
activated. The second mode is not properly controlled 
due to the nature of the tuning filter - a low pass fil- 
ter tuned to the first mode. Results with the second 
mode tuning filter are presented in Fig. 8. In this case, 
while the second mode is effectively controlled, the first 
mode is not well controlled. Figure 9 represents results 
with both first mode and second mode tuning filters 
are activated. As expected, both modes are controlled 
effectively. Considering the actuator saturation limit 
f l5OV maximum during the considerable period of ac- 
tive damping, the damping action could have been more 
dramatic. Finally, the two tuning filters and direct po- 
sition feedback are applied with the results presented 
in Fig. 10. 

As was shown in the above, the tuning filters com- 
bined with direct position feedback provides more flex- 
ibility for selecting design parameters, i.e., feedback 
gains. In spite of the guaranteed stability of the sys- 
tem, the P P F  or modified P P F  do not provide optimal 
performance, in general. Further study on selecting the 
optimal set of feedback gains is necessary for perfor- 
mance improvement. 

VI. Conclusions 

A modified compensator-based control law design 
methodology is analyzed and verified experimentally. 
The new approach provides enhanced flexibility actively 
changing damping as well as stiffness of flexible struc- 
tures. The stability region prescribed by the PPF is 
extended by the new approach. The analytical and ex- 
perimental results demonstrate the advantages of the 
new compensator design. 



Append ix  

The closed-loop compensator and system equations 
are described as 

The above system is asymptotically stable if and only 
if the following condition is satisfied 

where D is a closed-loop damping matrix 

Proof: 

First, let us introduce a coordinate transformation 
in such a way that 

where qt is a new transformed coordinate. The above 
transformation is motivated by Fanson and Caughey's 
work.' Also, the subsequent proof is based upon the 
development in Ref. [2]. Substitution of Eq. (A.4) into 
Eq. (A.l)  yields 

or in a matrix form, 

where the matrix E is introduced as 

It should be noticed that all the coefficient matrices 
are symmetric. For stability proof, a positive definite 
Lyapunov function is taken as 

. . 
Obviously, the Lyapunov function, being positive def- 
inite, has an equilibrium point at the origin. Now let 
us take time derivative of the Lyapunov function, and 
make use of Eq. (A.7). The result is 

For asymptotic stability, v should be negative definite. 
In other words, 

The above expression is expanded as 

where, for notational simplicity, [XI ,  XZ] [i, &] is 
introduced. Furthermore, 

where we added and subtracted X T E D , ~ E ~ X ~ .  In 
addition, 

Combining each term, we obtain 

The second term in the above equation is always non- 
positive. Hence, for stability, the first term should be 
always negative to make v negative definite. Hence, 
the stability condition is 

Substituting E 
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Table 1 Open and closed-loop eigenvalues for PPF 

Open Loop(x lo2)  Original PPF( x lo2)  New PPF(X lo2)  

-0.0779-0.OOOOi 0.0245-0.00001 -0.0275-0.OOOOi 

-0.0002-0.07791 -0.0316-0.13051 -0.0433-0.0OOOi 

-0.0002+0.07791 -0.0316+0. 1305i -0.1108+0.00001 

-0.0779+0.0000i -0.1437-0.OOOOi -0.0496-0.15941 

-0.4883-0.OOOOi 0.2730+0.0000i -0.0496-0.15941 

-0.0015-0.48831 -0.0175-0.49911 -0.0203-0.71451 

-0.00 15+0.48831 -0.0175+0.4991i -0.0203+0.7145i 

-0.4883+0.00001 -1.0353-0.19931 -0.8577-0.0OOOi 

-1.3676-0.0OOOi -1.0353+0.19931 -1.0863+0.00001 

-1.3676+0.0000i -0.0968-1.49001 -1.5866-0.OOOOi 

-0.0041-1.36761 -0.0968+1.4900i -0.0136-2.91821 

-0.0041+1.3676i -1.6707+0.0000i -0.0136+2.91821 
- - -  - - --- 

Table 2 Open and closed-loop eigenvalues for rate feedback 

Open L O O ~ ( X  lo2)  With zero G, ( X  lo2) With nonzero G,(x 10') 

-0.0779-0.OOOOi -0,0582-0.OOOOi -0.0561-0.OOOOi 

-0.0002-0.07791 0.0015-0.07881 -0.0096-0.07861 

-0.0002+0.07791 0.0015+0.0788i -0.0096+0.0786i 

-0.0779+0.00001 -0.1121+0.0000i -0.1383+0.0000i 

-0.4883-0.OOOOi 0.2302-0.OOOOi -0.1564-0.00001 

-0.0015-0.48831 0.0175-0.48751 -0.2454-0.44321 

-0.0015+0.4883i 0.0175+0.4875i -0.2454+0.44321 

-0.4883+0.0000i 0.3682-1.01661 -0.1274-0.67341 

-1.3676-0.OOOOi 0.3682+1 .01661 -0.1274+0.67341 

-1.3676+O.OOOOi -1.2971-0.13841 -1.3626-0.05301 

-0.0041-1.36761 -1.2971-0.13841 -1.3626+0.0530i 

-0.0041S1.36761 -1.6589-0.OOOOi -4.2922-0.OOOOi 
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