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Abstract 

A procedure is presented for modal 
and damping synthesis of flexible space 
structures from subsystem tests and/or 
analyses. In view of the various 
damping mechanism operative in a space 
structure, their contribution to total 
system damping and its compatibility 
with dynamic testing procedures, the 
spacecraft subsystems are identified as 
joints and components. The dynamics of 
joint subsystems is represented via its 
stiffness, inertia, and damping 
properties in physical displacement 
coordinates. Simple static influence 
coefficient and cyclic hysteresis tests 
are used for the determination of joint 
dynamic properties from experimental 
measurements. Component dynamics is 
represented in terms of generalized 
coordinates, defined to include natural 
vibration modes, with any arbitrary 
interface boundary conditions. Ritz 
vectors, physical displacements, or any 
other set of linearly independent 
admissible vectors that is convenient 
for the experimental and/or analytical 
characterization of the component. An 
existing damping synthesis method based 
on empirical correlation of subsystem 
stored and dissipated energies is 
modified to permit the use of measured 
resonance damping data. thus allowing 
any arbitrary variability of modal 
damping data. The results of the 
developed modal and damping synthesis 
procedure are verified by using a 
representative flexible space structure 
including structural joints. 

Introduction 

Structural damping plays an 
important role in the stability and 
control of flexible space structures. 
Owing to their size and the nature of 
damping mechanisms involved, the 
prediction of damping for such 
structures is necessarily a combined 
analytical and experimental effort. A 
number of component dynamic synthesis 
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methods have been developed in the past, 
however, a very few studies have been 
reported concerning the success of 
these methods. 

In a literature review of the 
subject reported in Reference 1, it was 
noted that the structural joints are the 
principal energy dissipators in a space 
structures, in fact, their contribution 
to system damping exceed that due to 
other subsystems by at least an order of 
magnitude. However, the dynamic 
characterization of the joint poses 
insurmountable difficulties when one 
attempts to use the modal survey 
procedures. The complex stiffness and 
dissipation characteristics combined 
with its size and relative rigidity in 
the frequency range of interest preclude 
their modal testing. Beam, plate, or 
shell-like subsystems of a space 
structure on the other hand pose no 
particular problems, and are amenable to 
conventional modal testing procedures. 

The methods of damping synthesis 
developed in References 2 and 3 do not 
provide adequate damping synthesis owing 
to the fact that the models of 
subsystems damping required by them are 
often difficult to obtain from 
experiments. Thus, for example. coupled 
modal damping matrices cannot be 
obtained for practical joints. Also the 
subsystem display a great amount of 
variability of damping from mode to mode 
making it impossible to interpolate 
damping values for off-resonance 
conditions. The two methods of damping 
synthesis and their shortcomings are 
also reviewed in Reference 1. 

The present paper present an 
improvement over the existing methods of 
damping synthesis in the following 
respects. First, it combines the best 
features of both methods of damping 
synthesis, the matrix method [2] and the 
energy method [ 3 ] ,  in as much as a space 
structure contains subsystems which 
require more than one type of damping 
characterization. Next, the energy 
method of damping synthesis is modified 
so as to be able to uses the mdasured 
damping data directly, -without having to 
project off-resonance damping 

Copyright @ American Institute of Aeronautics and 
Astronautics. Inc.. 1985. All rights reserved. 



information from measured resonance 
damping data. this allows any arbitrary 
variation of subsystem modal damping 
from mode to mode. Spacecraft joints 
are represented in terms of their 
physical coordinates. Since a joint is 
relatively rigid in the system frequence 
range, its modal testing is not 
required, rather, its stiffness 

r characteristics are derived from 
influence coefficient tests and its 
energy dissipating characteristics are 
derived from load-deflection hysteresis 
curves obtained under forced cyclic 
loading conditions. These tests are 
conducted at excitation and frequency 
levels a joint is likely to be subjected 
to when vibrating as a part of the 
system. 

In the following sections the 
formulation of the synthesis procedure 
and joint modeling and its experimental 
characterization are described. The 
results of a verification study are also 
presented. 

D a m ~ i n a  Synthesis Formulation 

In the present work we assume that 
damping does not alter subsystem modes 
and frequencies and use these undamped 
properties to obtain built-up system 
modes, frequencies, and stored energy 
distributions. The case involving 
heavily damped subsystems will be 
addressed in a future work. A structure 
is partitioned into subsystems 
identified as components and joints. 
All subsystems may be considered as 
either joints, or components connected 
through fictitious joints: the 
restriction being that no two joints or 
components may be connected directly. 
Space structure subsystems quite 
naturally fit into the above 
identification scheme. The components 
are characterized in terms of their 
dynamic properties in generalized 
coordinates such as natural vibration 
modes. static deflection functions, Ritz 
vectors, etc., and associated inertia, 
stiffness, and damping properties. No 
restrictions are place on the 
orthogonality of the generalized 
cosrdinates. as long as they are from a 
complete set and are linearly 
independent. With these conventions. 
the system synthesis transformation and 
the coupled system dynamics can be 
obtained as follows. 

The equations of motion of an 

P 
uncoupled subsystem may be written in 
the physical coordinates as 

(6) (s) (6) (s) 
where M , C , K , and H are. 

= X = X = X = X 

respectively. the inertia, viscous 
damping, stiffness, and hysteric 
(structural) damping matrices, ~ ( ~ 1  is 
the displacement vector, p(s) is the 
vector of forces including interactive 
forces due to adjacent systems, and i 
i In the following, the 
superscripts with s = a is used to 
identify the component and with s = j is 
used to identify the jth joint. 
Equation (1) includes viscous and 
hysteretic damping. For arbitrary 
mechanisms and distributions, the 
damping is specified through an energy 
correlation of damping data in the 
manner described in Reference 3. 

Equation (1) as it stands represents 
the dynamic properties of a joint 
substructure. For a component, we 
define a generalized modal matrix 
@(a) extending the definition of 
= x  

classical modal matrix of the 
eigenvectors of Equation (1). the column 
vectors of @(a) are generalized 

=X 

displacement functions such that the 
vectors are linearly independent, and a 
linear combination of the vector is 
capable of representing the elastic 
motion of the component. The matrix 
@ca) can thus include normal 
= X 

modes, static deflection functions 
polynomials, etc. The physical 
displacement of the component is then 

by definition. In the following. 

@(a) and [(a) are referred to as 
= X - 
simply the modal matrix and modal 
coordinate vectors, respectively. 
Equation (1). together with Equation 
( 2 ) .  leads to the equation of motion of 
the component is generalized coordinate 
[(a) as 

etc., are the dynamic property matrices 
in generalized coordinates, and 



depending upon the type of generalized 
displacement functions chose, the 
matrices may be diagonal, banded, or 
fully populated. 

The coupled system equations of 
motion are obtained by considering the 
continuity of displacement field ~ ( ~ 1  
across the substructure interfaces. 
Thus, the displacements of a point when 
considered on adjacent substructures are 

where the joint and component connection 
interface is intended, and 
x( j) l c  and ~ ( 4 )  l c  are, respectively, - 
the partitions of the joint and 
component displacement vectors 
corresponding to the interface degrees 
of freedom. Using Equation (2) in 
Equation (4) leads to a constraint 
relation between the joint connection 
point displacements and the generalized 
modal coordinates of the component as 

The constraint relation given by 
Equation (5) results into an exact 
component synthesis transformation. The 
extended definition of component modal 
coordinates, Equation (2). makes the 
synthesis procedure applicable to 
arbitrary component interface boundary 
conditions. The remainder of the 
synthesis procedure leading to system 
modes and frequencies is 
straightforward: the details may be 
found in Reference 4. 

Synthesis of substructure viscous 
and hysteretic damping matrices is 
achieved through system coordinate 
coup1;ing transformation T and system 
modal matrices f Thus 

0 

* 

( 6  
and are the system viscous and 
hysteretic damping matrices in coupled 
system modal coordinate q. The matrix 

&, is intended at a given system 
frequency only. 

Synthesis of the empirical damping 
laws is affected as follows (Reference 
3). The dissipation of energy function 
is obtained from experiment and curve 
fitting techniques as 

where D ( ~ )  is the energy dissipation 
per cycle, T(") is the maximum stored 
energy, and a and R are the 
coefficients of the damping law. 
Following system mode and frequency 
synthesis, the substructure stored 
energy is recovered as 

where a(") is the peak amplitude of 
vibration of the substructure. The 
corresponding dissipated energy is 
obtained from Equation (7). The system 
damping ratio is then given as 

a0 is the peak amplitude of the system 
mode vector and N is the total number of 
subsystems. When damping correlations 
of the type given by Equation (7) are 
available for each vibration mode of the 
components and deformation modes of the 
joints, the system dissipated energy may 
be calculated more accurately as 

where ai(I) and fii(') are the 

experimentally determined arameters of 
the damping law for the itR 
deformation mode of the subsystem. 
NJ and NC are respectively theTnumber of 
joints and number of components in the 
system and MJ and MC are the number of 
deformation modes and vibration modes of 



each joint and component. respectively. 
SE represents stored energy. 

The Equation (10) represents an 
improvement over the energy method of 
Reference 3 in that it uses the measured 
damping data directly. The method of 
Reference 3 required grouping of modes 
and reduction of measured damping data 
to system frequencies. In Equation 
(lo), the joint damping parameters a 
and A can be obtained in each of its six 
fundamental deformation modes (axial, 
transverse and inplane shear. torsion, 
and transverse and inplane flexure) at 
excitation and frequency levels as seen 
by the joint when vibrating as  a part of 
the total system. The component damping 
parameters are obtainable from resonance 
measurements. 

~ o i n t  Modeling Procedure 

Deployable structural joints. owing 
to their design and complex energy 
dissipation mechanisms, present a 
formidable analytfcal task. Due to 
these reasons a p&enomenofogical 
modeling approach is adopted in the 
present wo~k. The joint model used is 
basically a three-dimensional version of 
a two parameters Kelvin-Voigt solid with 
viscous or hysteretic damping. with a 
proper choice of the spring and damping 
parameters the model may be useti in an 
approximate way to represent the overall 
axial, f lexuraf, torsional. and shear 
behavior of a physical joint with 
multiple degrees ef freedom. The 
representation of the jaint in terms of 
a two tonneetion point model with three 
translational and three rotational 
flexibilities is made in view of the 
relatively small size of the joint and 
the oenneetion interface in emparison 
to the major dimensions and 
flexibilities of the components to wh5ch 
it is connected. The assumption is also 
necessary to facilitate its experimental 
characterization. 

The joints, as any other subsysrem 
of a built-up structure, undergo a 
forced vibratory motion when vibrating 
as a part of the built-up system. The 
joint natural frequencies are. however, 
several orders of magnitude higher than 
the system frequencies of concern. In 
view of this and considering the fact 
that joint damping depends upon 
frequency and amplitude of vibration. 

the joint stiffness and damping 
parameters required are obtained from 
nonresonance forced vibration tests of 
the joints. Ideally these tests should 
be conducted at the system frequency and 
amplitudes of vibrations. In the 
present work an iterative approach was 

adopted since the system properties are 
not known a priori. Joint stiffness 
coefficients are measured at arbitrarily 
low frequency cyclic loading 
conditions. These properties are then 
used to obtain system modal properties. 
Joints tests are repeated at these 
improved frequencies an& amplitudes of 
vibrations. Joint damping value is 
obtained from the measurement of cyelic 
energy dissipation and the peak energy 
stored. These tests are repeated for 
each system frequency and for each of 
the six fundamental deformation modes of 
the joints. 

In the following, an exainple problem 
is described in which the above 
procedure is applied to charaeterizc 
joints and subsequentfy obtain system 
damping synthesis. 

Examole Problem 

A representative flexible spacecraft 
appendage incorporating realistic 
deployable joints is used to verify the 
accuracy of the joint modeling and 
system damping synthesis procedures 
developed in the proeeedinq sections. 
Figures la and lb show the assembled 
structure and close-up view of a typical 
joint. respectively. 

Figure la 

Representative Flexible Spacecraft 
hpwndaqe - Built-UP fvstem 

- - 
f 

F 



Figure lb 

Representative Flexible Spacecraft - 
Appendage - Structural Joint 

The joint shown in Figure lb is a 
simple two link hinge designed to 
simulate the hinge mechanism used in 
INTELSAT V solar array structure. It 
consists of a spring-loaded pin. which 
slides into a cavity to lock the hinge 
in deployed position. The hinge is 
movable when the lock-pin is withdrawn 
from the cavity. Due to dimensional 
tolerances there is a free play at the 
two hinge pins. This free play was 
reduced by employing set screws at the 
hinge pins. Also €he joints were 
preloaded in order to enable cyclic 
loading without introducing additional 
free play at the joint and loading 
fixture interface. An KEi axial load 
frame and computer controller programmed 
in load control was ased for testing in 
every deformatian mode of the joints. 
Extensiometers were applied to measure 
deformations. The loading was time 
harmonic. When steady state response 
was reached for a given test, the load 
deformation cycle was randomly capture 
by the HTS computer system and routed to 
an X-Y plotter to record the results. 
Figure 2 shows some typical hysteresis 
loops of a joint. In most part the 
hysteresis loops resemble those of a 
viscoelastic structure. As expected. 
the damping values for the joint are 

considerably higher than those of a 
viscoelastic structure without any 
frictional interfaces. Table 1 gives 
the joint damping (loss factors] and 
stiffness coefficients for the three 
predominant deformation modes. The 
inplane and transverse deformation 
modes, respectively, refer to the planar 
and transversal directions of the 
built-up assembly. Details of joint 
tests may be found in Reference 5. 

Fiaure 2 

Typical Hysteresis LOOPS for a 
Joint Under Cyclic Loadinq 

Routine modal analysis procedure was 
used to obtain modal properties of the 
plate-like components of the assembly. 
Connection interfaces were held free. 
Table 2 lists the modal frequencies and 
loss factors for first several modes of 
the yoke and the panels. 

Table 1 

Joint Dampinq and Stiffness Coefficients 

I 

TransveFse 
Bending 

toss Factor Stiffness W e  of 
Defonuatlon Hz t I Excltatlon 

Frequency 

-0005-,00633.100in-lb/ 
rad 

.I 
5. 

10. 
,002 - .a13 
.017 - -027 

2e. 
50. 

-06 - .084 
,165 - .17 



Table 2 

Modal Properties of Component Subsystems 

Results of system modal and damping 
synthesis using the formulation of 
Section 2 are given in Table 3. Results 
of direct system measurements are also 
given in the table. Combined modified 
energy and matrix methods of damping 
synthesis were used in calculating 
system damping values. The results of 
matrix synthesis alone are in serious 
error since an unique damping matrix for 
joints valid for all system frequencies 
of interests cannot be defined. The 
classical energy method of damping 
synthesis could not be-performed since 
the required modal damping versus stored 
energy correlation for joints was 
unavailable from tests. 

W e  Type 

F i r s t  
Bending 

Second 
Bending 

F i r s t  
Torsion 

Third 
Bending 

Second 
Tors ion 

Fourth 
Torsion 

 hi+ 
Torsion 

Mode 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Table 3 

System Modal Properties 

PANELS 

It should be noted that as a 

Frequency 
Hz 

65.06 
88.25 

129.5 
161.89 
178.91 
258.9 
307.4 - 
347.3 

YOKE 

consequence of Equations (9) and (10). 
the formulation presented in this paper 
leads to expressions for system damping 
as explicit functions of the joint 
deformation modes and component 
vibration modes. Thus, for example, in 

Loss Factor 

.0017 

.0009 

.002 

.0024 

.0005 

.0003 

.OW2 - 

.0002 

Frequency 
HZ 

35.2 
59.7 

177.0 
296.0 
319.5 
425.9 
579.2 
772.3 
842.2 

the first system mode the system damping 
qsl is given as 

J J Y Y 
qs = .002qT + .253qB + .392q1 + .091q4 + 

1 

Loss Factor 

.01 

.003 

.0007 

.0106 

.0019 

.0001 

.0027 

.0042 

.0118 

P P .102q2 + .105Tll3 + ... 
where the superscripts refer to the 
joint (J), yoke (Y), and panel (P), q 
is the loss factor, subscripts denote 
the joint mode of deformation such as 
torsion (T) or bending (B), and 
subscripted numerals denote component 
mode numbers. The numerical 
coefficients are simply the fraction of 
total stored energy contributed by the 
associated subsystem. Energy 
dissipation proportional to stored 
energy is assumed in the above. The 
utility of the functional relationship 
of the type lies in assessing the 
sensitivity of the system damping to 
subsystem design changes. 

Conclusions 

A damping synthesis procedure 
specifically addressing the problems of 
joint subsystems is presented. It is 
seen that the modal testing of joints 
presents difficult problems currently 
beyond the state-of-the-art modal 
testing methods. The damping synthesis 
procedure developed does not require 
joint modal data, instead more relevant 
data obtainable in rather simple tests 
suffice. A procedure is presented for 
the characterization of joints from 
experimental measurement. The damping 
synthesis method presented in this paper 
also improves the synthesis of component 
damping by requiring only resonance test 
data without restricting the variability 
of modal damping data from mode to 
mode. A representative flexible 
spacecraft structure is used to provide 
a validation of the developed procedure. 

The success of the joint modeling 
procedure presented in this paper is in 
part due to the structural modifications 
made in the joints under study. More 
often the joints have significant amount 
of free play, giving rise to nonlinear 
stiffness and impact damping. Further 
work is needed to characterize more 
realistic joint behavior and synthesize 
nonlinear subsystems. 
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