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Abstract 

This paper deals with the attitude 
motion of a dual-spin spacecraft which 
consists of an asymmetric rigid platform 
and an asymmetric rigid rotor connected 
together by a flexible joint. The 
equations of motion represent a flexible 
multiple-degree-of-freedom gyroscopic 
system with periodic coefficients due to 
asymmetries. The equations are analyzed 
for possible resonances and associated 
instability regions by using first 
asymptotic approximation. The 
resonances occur when either the rotor 
spin frequency or the platform spin 
frequency is in the neighborhood of a 
natural frequency or half the sum of any 
two natural frequencies. The 
instability regions associated with 
these resonances are given explicitly. 

Nomenclature 

IXP. IYP = platform transverse 
principle inertias 
about axes x2 and 
y 2 

Ixra Iyr = rotor transverse 
principal inertias 
about axes x4 and y4 

fxp = I , ~  + mti 

Iyr = Iyr + mt: 
I ~ P  = (jxp ' Typ)/2 
Itr = (fxr + Tyr)/2 

I P ~  = m t p Q r  
Kx* Ky = stiffness in direc- 

tions x: and y:, 
respectively 

&P = distance between points 
S and 0' 

a r = distance between points 
S and 0" 

* Senior Member of Technical Staff, 
Spacecraft R&D. 

m~ = platform mass 

m r = rotor mass 

0,01,0* = cm of spacecraft. 
platform and rotor. 
respectively 

S : joint between platform 
and rotor 

a = (Txp - Typ)/(fxp + 

Iyp) = platform 
inertia inequality 
factor 

u = ifxr - T ~ ~ ) I ( ~ ~ ~  + 
fyr) = rotor 
inertia inequality 
factor 

= (Kx - Ky)/(Kx + Ky) = 
stiffness inequality 
factor 

= ex 4 +x 

= By + ay 
= platform axial inertia 

= rotor axial inertia 

= spin rate of the platform - spin rate of the rotor 

Introduction 

Attitude stability of dual-spin 
spacecraft has been studied by several 
investigators 1 * 2 * a -  Using the energy 
sink analysis. stability conditions have 
been derived as a function of spacecraft 
inertias and energy dissipations in the 
rotor and the platform. However, the 
emphasis in these studies has been on 
symmetrical spacecraft. This paper 
deals with attitude instability due to 
unequal transverse principal inertias 
and stiffness. Such effects have been 
extensively studied for gyroscopes and 
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rotors4e5. The general equations of 
motion for such systems contain periodic 
coefficients. Reference 6 presents 
stabiliLy conditions for special cases 
an asymmetric platform with a symmetric 
rotor and a symmetric platform with an 
asymmetric rotor. For such cases. the 
equations of motion can be transformed 
into constant coefficient equations. In 
reference 7, the effects of momentum 

r wheel stiffness inequalities are 
studied. In this paper, instability 
regions for a more general case of a 
dual-spin spacecraft, where asymmetries 
are assumed in both the platform and the 
rotor. are obtained. 

The dual-spin spacecraft model 
consists of a rigid asymmetric platform 
connected to a rigid asymmetric rotor.by 
a flexible joint. This model represents 
two classes of spacecraft. First. 
spin-stabilized spacecraft, such as 
INTELSAT VI, where the main body is 
spinning, providing gyroscopic 
stabilization. and a non spinning 
platform consisting of antennas which 
are oriented towards a fixed point on 
the earth. The second class consists of 
body-stabilized spacecraft in which the 
main body is non-spinning and the rotor 
consists of a moment wheel with 
compliant bearings, such as magnetic 
bearings. The equations of motion 
represent a multiple-degree-of-freedom 
gyroscopic system with periodic 
coefficients due to inertia and 
stiffness asymmetries. The gyroscopic 
equations are normalized by using the 
Meirovitche method. The asymmetries 
are assumed to be small. The resulting 
equat.ions are the equations of motion of 
a multiple-degree-of-freedom system 
under parametric excitation. The 
attitude instabilily regions are given 
explicitly by using first asymptotic 
a p p r o ~ i m a t i o n * ~ ~ ~ .  

Spacecraft Model 

An idealized model of a dual-spin 
spacecraft is shown in Figure 1. It 
consists of a platform P interconnected 
to a rotor R by a shaft and bearings. 
The rotor and the platform are assumed 
to be rigid. The flexibility is assumed 
in the shaft and the bearings. The 
platform and the rotor are assumed to be 
spinning at constant spin rates o and 
or, respectively. The axes x,Y,$, are 
fixed in space with the origin at the CM 
of the system. The axes X,Y,Z, are - obtained from X,Y,Z, by rotation ex about 
the X, axis and ey about the Y, axis. The 
axes X:Y:Z: which are the principal 
inertia axes of the plat.form are fixed 
in the platform and rotating at spin 
rate op about.the Z, axis. The 
orientations of axes X4Y4Z4, where Z4 
is the spin axis of the rotor, are 

F i g u r e  1 .  Dual-Spin S a t e l l i t e s  

obtained by rotation ax about the X, 
axis and % about the Y, axis. The axes 
X:Y:Z: are fixed in the rotor and rotating 
at spin rate or about Z, axis. The 
rotor is assumed to be statically and 
dynamically unbalanced. The principal 
inertia axes X,Y6Z6 of the rotor are 
described with respect to X~Y:Z: by 
rotation Qx about the X: axis and 
Q about the Y, axis. The Jotor CG 
oYfset, 6, has a component Lx in X: axis 
and Sy in the Y: axis. The CM1s of the 
rotor, the platform, and the system are 
denoted as 0*, 01, and 0, 
respectively. 

Equations of Motion 

The equaLions of motion of the 
spacecraft model are obtained by using 
Lagrange's equations, as discussed in 
Reference 6. The higher order 
non-linear terms are neglected. Damping 
is not considered at this point. The 
equations of motion are: 

where generalized vector, X. is defined 
as follows: 

The other matrices are defined as 
follows: 



Itp(l + a1 tP 
acoso t) sin20 t 

Itp(l- 

acos20 t 

Symmetric 

Normalization 

In order to normalize these 
gyroscopic equations the Meirovitch 
method is most suited. However, 
in order to use this method, the 
stiffness matrix K has to be 
non-singular and positive definite. In 
the present formulation, the stiffness 
matrix is singular and involves only 
Vx - 0, (ax) and ly -ey (a ) .  In order 
to use Meirovitch method or normaliza- 
tion. the following generalized 

7 
coordinates are used. 

1 0 +  
ZP P 

ZaI o 
tP P 

~ 0 ~ 2 0  t 

2a1tpop 
sinZo t 

P 
C0S20 t 

0 

0 

'5 
sin20rt 

'6"- 

ucos20rt) 

Using the Meirovitch method with these 
coordinates, the second order equations 
of motion are transformed into the 
following first order equations. 

Km( 1+Y 

cos2o t) I symmetric 

where 

Itp O =pr O 
0 

=tp O Ipr O 

Itr O 0 

Symmetric 
Itr O 

km 

s 0: sin (or. + 1) 

where M and K are symmetric matrices, G 
is a sum of a skew symmetric matrix and 
a symmetric matrix due to inertia 
inequalities. F is the force vector due 
to static and dynamic unbalance. Let us 
assume that stiffness and transverse 
inertia inequalities and static and 
dynamic unbalance are small and can be 
expressed as 

Skew-Symmetric 0 

The elements of the matrices in the right 
hand side of Eq. (9); PI, F ~ ,  P3. P.. F', 
F6, F7, and Fa; are all zeros with the 
following exceptions: 

where c is a small positive parameter. 
In this case. periodic terms due to the 
inequalities can be taken to the right 
hand side of $he equation (1) and can be 
considered as parametric excitation. 
The matrix G becomes skew symmetric. 



where 

The eigenvalues and eigenvectors are 
obtained for the matrix R which is 
defined as 

- - - - 
K = M-'K (14) 

where 

The eigenvalue solution of the matrix R 
consists of 3 pairs of repeated eigen 
values on (n=1,2,3) and 3 pairs of 
associated eigenvectors Yn and Zn 
(n=1,2,3.). 

For a positive definite M. which is true 
for the present system, the following 
orthogonality relations hold: 

where I is a unit matrix 

q =[u:Z]Ifil where ( = I 2  and q = q2 1::i 1::l 

substituting q from equation (20) into 
equation ( 9 ) .  pre-multiplying by fY:filr, 
and using relationships (18) and (19). we 
get 

I It lib = .[.in zoPt j~lIk!, + 
(21) 

P' lfi/(+ cos 2 P t IF. 16 1 F4i$ ,I[+ 
sin20rtlFs !$ ~ ~ l f i l l +  cos 2u r t I - '  F I [ (  + 

-, 

where i i  = [Y: $' ~j [Y: Z] 
FO = ry : i p  FO 

L J 
where j=1,. . . . 8  

Let us define 

Using equations (22) and (23). equation 
(21) can be rewritten as 

I - on = c [sin 2 u t i + P : ~  4 + 
P 

(24) 

The above two first order equations (24) 
and (25) are transformed into one second 
order equation by using the following 
steps: (a) differentiate equation (24) 
with respect to t: (b) multiply equation 
(25) by o: (c) add the resulting 
equations from steps..a and b. and (d) 
substitute q. 4 and q in terms of E in 



the resulting equation from step c and 
neglect c2 and higher terms. By 
introducing damping in terms of modal 
damping in the resulting equation from 
step c, the final equation is 

1 i  + 02E = 

pa E 

P' E 

p9E 

pL2E 

where - 

c C €  + sin 20 t( P' i + p2 i + I P 
L 

) + cos 20 t (p4 i + p5 i + 
P 

) + cos 2 ort ( plO€ + pl1€ + 
-, 

c$j = critical dampings 
of :bexjth mode, j=1,2,3 

Tnstability Regions 

In the right hand side of Eq. (26). 
the last two terms produce forced 
vibrations and the other terms generate 
parametric resonances. €Isu9 has 
carried out the first approximation 
analysis of similar equations and 
determined the instability criteria 
explicitly. The instability may occur 
for the following rodsonance conditions: 

1 

The stabiliLy conditions for these 
rotionances are as follows: 

case I 

where cX = h 
The spacecraft will be unstable if 

where 
- 

v = 16h2+ 

, 3 = A  
j 

dl . - 

d2 = p6 - 
j k . 

d3 : P ; ~  - 

d4 = pik - 

Case 11. 

where c = h 

The spacecraft will be unstable 



Case I11 

The spacecraft will be unstable if 

~ k + A > u r > O k - A  ( 4 0  1 

where 

Case IV 

The spacecraft will be unstable if 

where 

The above instability conditions are 
obtained from the first asymptotic 
approximation theory and are therefore 
called "first approximation instability 
 region^.^ Another important 
approximation in the above analysis is 
in the representation of damping which 
is introduced as modal damping. 

Numerical Exam~leS 

In this paper, two numerical examples 
have been analyzed. The first example 
represents a dual-spin stabilized 
spacecraft and the second example 
represents a body-stabilized spacecraft 
with a fixed momentum whed. 

First Example: Dual-spin stabilized 
spacecraft. 

The following parameters have been 
used in this example for numerical 
calculations: 

These mass properties approximate 
those of INTELSAT IV Spacecraft. The 
stiffness, k,, corresponds to the 
stiffness of the BAPTA (Bearing and 
Power Transfer Assembly). The 
parameters are the same as those used in 
Reference 6 in order to make a 
comparison between an exact solution and 
a first asymptotic approximation. 
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FIGURE 2. NATURAL FREDUENCIES FOR DUAL-SPIN 
STABILIZED SPACECRAFT 

Figure 2 presents the natural 
frequencies of the system. The first 
natural frequency is closely associated 
with the rigid body nutation frequency. 
It is, however. lower due to joint 
flexibility. In the second natural 
mode, the gyroscopic stiffness opposes 
the structural stiffness because the 
precession and the spin rate directions 
are opposite. Hence. the second r~~itural 
frequency decreases with the increase in 
the spin rate. In the third natural 
mode, opposite is the case, i.e.. 
natural frequency increases with the 
increase in the rotor spin rate. 

UNSTABLE REGION 

6= CRITICAL MODAL DAMPING 

- 6 = 0 0 0 5  

0 I I I I I 
5 6 7 8 
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FIGURE 3. UNSTABLE REGION FOR RESONANCE CONDITION 
w, = '/. ( W2 + W,) FOR DUAL-SPIN STABILIZED SPACECRAFT 

As discussed in the previous section. 
the inequality in the transverse 
principal inertias and the transverse 
joint stiffness can create attitude 
instablity for resonances up or or = l / r  
(oj + ok) or ok. Jn the present example, 



attitude instability can occur in the 
neighborhood of or = 3.6 Hz (or = 1/2(o1 + 
02)); or = 5.2 HZ (or = 0,): or = 7.25 Hz 
(or = 1/2(02 + 0,)). and or = 10 Hz 
(or = v 3 ? .  Figure 3 shows the 
instability region due to inequality in 
joint transverse stiffness for resonance 
conditions or = 1/2(02 + a,). In the 
unstable region, the nutation angle 
increases exponentially. In 
Reference 6, the unstable regions for 
the same parameters are obtained by 
calculating eigen values of the system. 
In this paper, however, the possible 
instability regions are predicted on the 
basis of resonance conditions and the 
instability regions are calculated 
explicitly. The agreement in the 
current results and the results of 
Reference 7 is good. The operating 
rotor spin rate (0.833 Hz) of the 
INTELSAT IV spacecraft is well within 
the stable region. 

Second Example:- Body-stabilized 
spacecraft 

The following parameters have been 
used in this example for numerical 
calculations. 

, UNSTABLE REGION 

\ 0 = o  

FIGURE 5. UNSTABLE REGION FOR RESONANCE CONDITION 
w, = '/. ( o, + w, ) FOR BODY-STABILIZED SPACECRAFT 

The mass properties are close to those 
of INTELSAT V spacecraft. The momentum 
wheel is. however. assumed to have more 
flexible bearings, magnetic bearings 
instead of ball bearings. 

FIGURE 6. UNSTABLE REGION FOR RESONANCE CONDITION 
W,= w2 FOR BODY-STABILIZED SPACECRAFT 

Figure 4 presents the natural 
frequencies of the system. The first 
natural frequency, nutation frequency, 
is several orders of magnitude lower 
than the other natural frequencies. The 
possible resonances are at or = 9 Hz 
(or = l/2(a1 + u2)): or = 15 HZ 
(or = oa): or = 25 Hz (or = i/z(o, + 0,)) 
and or = 40 Hz (or = l/2(02 + a,)). 
Figures 5 and 6 show instability regionsdue 
to inequality in transverse joint stiffness 
for resonances or = l/z(02 + a,) and 
or - a?. respectively. The nominal ? 
operating speed is 130 Hz (7,800 RPM). 
So during spin-up the momentum wheel 
passes through these instability regions. 

Summary and Conclusions 4 

50 75 100 
ROTOR SPIN RATE (Hz), W, 

The equations of motion of an 
assymmetric dual-spin spacecraft are 

FIGURE 4 NATURAL FREQUENCIES OF 
BODY-STABILIZED SPACECRAFT 



presented. An asymmetric rigid platform 
is assumed to be connected to an 
asymmetric and statically and 
dynamically unbalanced rigid rotor by a 
flexible joint. The resulling equations 
are the equations of motion of a 
multiple-degree-of-freedom gyroscopic 
system with periodic coefficients. The 
periodic coefficients are contributed by 
inequality in the rotor transverse 
principal inertias, inequality in the 
platform transverse principal inertias, 
and the transverse stiffness inequality 
of the flexible joint. The gyroscopic 
equations are normalized by using the 
Meirovitch method. The possible 
resonances and the associated 
instability conditions are obtained by 
using asymptotic appcoximation. The 
resonances occur when either the 
platform spin frequency or the rotor 
spin frequency is in the neighborhood of 
any natural frequency or in the 
neighborhood of half the sum of any two 
natural frequencies. The stability 
criteria for these resonances are given 
explicitly. In the analysis, damping is 
introduced as modal damping. A more 
detailed analysis should represent 
damping in terms of rotor damping, 
platform damping, and joint damping. 

Two numerical examples, representing 
a dual-spin stabilized and a 
body-stabilized spacecraft with fixed 
magnetic bearing momentum wheel, have 
been analyzed. The natural frequencies, 
possible resonances and instability 
regions have been determined for these 
examples. For the dual-spin stabilized 
spacecraft, the operating rotor spin 
rate is well below the unstable region. 
In the body-stabilized spacecraft, the 
momentum wheel passes through the 
instability regions during spin-up. 
Hence, asymmetries in magnetic bearing 
stiffness can cause attitude instability 
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