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Abstract- Unauthorized information flows can result from 

malicious software exploiting covert channels and overt flaws 
in access control design.  To address this problem, we present 
a precise, formal definition for information flow that relies on 
control flow dependency tracing through program execution, 
and extends Dennings’ and follow-on classic work in secure 
information flow [7][19][27].  We describe a formal security 
Domain Model (DM) for conducting static analysis of 
programs to identify illicit information flows, access control 
flaws and covert channel vulnerabilities.  The DM is 
comprised of an Invariant Model, which defines the generic 
concepts of program state, information flow, and security 
policy rules; and an Implementation Model, which specifies 
the behavior of a target program.  The DM is compiled from 
a representation of the program, written in a domain-specific 
Implementation Modeling Language (IML), and a 
specification of the security policy written in Alloy.  The Alloy 
Analyzer tool is used to perform static analysis of the DM to 
automatically detect potential covert channel vulnerabilities 
and security policy violations in the target program. 

 

I. INTRODUCTION 
Identification of exploitable covert channel vulnerabilities 

is vital in the development of systems intended to enforce 
mandatory access control policies, and in fact is required for 
the successful evaluation of such systems at the highest levels 
of assurance [3][18].  This paper presents a precise, formal 
definition for various types of covert channels, which 
depends upon a representation of control flow dependencies, 
thus extending classic work in this area [7][19][27].  A 
security domain model is described for formally representing 
different types of covert channels, and for conducting static 
analysis1 of certain program implementations.  This model 
employs dynamic slicing techniques to analyze programs for 
the existence of access control flaws, where appropriate.  

Widely accepted evaluation standards [3][4][18] require 
that high assurance secure systems be designed, developed, 
verified and tested using rigorous processes and formal 
methods.  This evaluation process must include 
demonstration of correct correspondence between system 
representations at various levels of abstraction, e.g., security 

                                                             
1 In this context, static analysis refers to analysis of program code without 
actual program execution. 

policy objectives, security specifications, and program 
implementation.  The Common Criteria for Information 
Technology Security Evaluation requires that systems at 
EAL-5 or higher2 undergo covert channel analysis to ensure 
that the system is capable of enforcing its security policy in 
terms of covert as well as overt interactions [3].   

Formal security models are often based on concepts of 
program secure state and state transitions.  High assurance 
evaluation standards [3][4] require a formal verification that 
the state transitions resulting from program execution 
preserve the security properties defined by a policy.  Our 
approach analyzes programs for preservation of security 
properties through state transitions, and advances the 
concepts of secure information flow in classic work by 
Denning and others [7][27], by describing automated 
techniques for information flow static analysis.  Previous 
work in developing our approach has demonstrated the ability 
to detect illicit information flow security violations [22], and 
covert channel and overt flaw vulnerabilities based on control 
flow dependency analysis [23].  

The Implementation Modeling Language (IML), the first 
novel element in this approach, is a language that supports 
basic information processing via assignment statements, 
conditional and loop statements, read/write statements, file 
random access, and access to a system clock.  Program 
implementations represented in IML are called base 
programs, and they provide a standardized notation for 
conducting static analysis of target programs for adherence to 
a security policy. 

The second novel element in this work is the definition of a 
security Domain Model (DM), represented as an Alloy 
[1][11] specification. The DM provides a framework for 
specifying program state and state transitions, as well as 
security-related concepts such as security policy, information 
flow, access control, and covert channel vulnerabilities.  The 
DM is comprised of an Invariant Model, which defines the 
generic concepts of program state, information flow, and 
security policy; and an Implementation Model, which 
specifies the behavior of the base program.  A specialized 
DM-Compiler was developed to translate a base program in 
IML into an Implementation Model, and to integrate it with 
the Invariant Model to form a complete DM specification.  
The DM is verified using the Alloy Analyzer, which 

                                                             
2 EAL-7 is the highest Common Criteria evaluation assurance level. 



 

identifies execution paths where the security policy rules are 
violated. 

Whereas many previous security models capture 
information flow between objects and subjects, the DM does 
not explicitly define an object, but implements this concept 
through variables.  An access table records sensitivity labels 
for program variables as a means of tracking information 
flow across state transitions.  These labels indicate the 
sensitivity of data stored within a variable, and may change 
over time as data flows through the system.  

The DM captures the concept of information flows with 
respect to a system subject for input to and output from an 
external device or random access file.  The subject is 
essentially the executor of the statement, and has a defined 
access label.  The policy rules define legal information flows 
based on the relationship between the subject label, and that 
of the I/O source/destination variable, e.g., in a Write_dev 
operation, a subject label must dominate a source variable 
label, in order for the variable to be successfully accessed for 
writing.  This requirement might seem counter to the BLP *-
property, however in our approach a Write_dev is modeled as 
a flow from a source variable to a target device, with the latter 
specified at the level of the subject label. 

Section 2 of this paper provides background discussion on 
covert channels, control flow dependencies, and dynamic 
program slicing.  Section 3 presents an overview of the DM 
methodology for modeling programs and security policies.  
Section 4 summarizes our test results with several program 
examples.  Sections 5 and 6 discuss related work, and planned 
future work in this research. 

II. BACKGROUND 
We discuss several computer security concepts relevant to 

this research. 

A. Covert Channels 
Covert channels use entities other than data objects as a 

way to transfer information between system subjects, 
specifically entities not intended for information transfer 
[12][14].  Such channels allow processes to transfer 
information in a manner that violates a security policy [8].  

An operating system may virtualize a shared physical 
resource so that each subject, or equivalence class of subjects, 
perceives that it has exclusive access to the resource.  A 
covert channel can result from the incomplete virtualization 
of a resource such that some attribute of the resource remains 
shared, indirectly.   

A common taxonomy of covert channels defines them as 
being either storage or timing channels [20].  For both storage 
and timing channels the sender and receiver (typically 
subjects) must have [12]: 

1. Indirect access to an attribute of a shared resource, 
which the sender can modify, and the receiver can 
view.  

2. A means to initiate and synchronize their actions.  

In our analysis, we consider that the primary distinction 
between a covert storage channel and a covert timing channel 

is the means by which the receiver observes the change in the 
attribute: 

3. Storage – the receiver views an error message, or other 
information placed in its address space by the system.  

4. Timing – the receiver views changes to the relative 
timing of “legal” events.  

The attribute in question forms a point of interference [9] 
between the subjects.  To be the basis for an exploitable 
covert channel, the interference must also be contrary to the 
computer security policy – i.e., with a mandatory access 
control (MAC) policy, the sender’s security level must be 
higher than the receiver’s level (with respect to 
confidentiality) [26].   

B. Control Flow Dependency Flaws 
Covert storage channels based on control flow 

dependencies often involve the indirect use of internal 
resources, such as buffers or non-exported files in a program 
control decision, to pass information from High to Low 
[12][14][15].  In addition to this, our approach is capable of 
detecting overt flaws based on control flow dependencies. 

The approach here for discovering flaws based on control 
dependencies employs a dynamic slicing analysis.  To 
determine the existence of such a dependency within the 
program, the chain of statements preceding a value 
assignment is examined with respect to the access labels of 
the variables in these statements.  If the context of a previous 
statement includes variables that are higher than the 
destination, then there is an overt flaw. 

The code snippet below would not be classified as having a 
covert channel since internal attributes are not referenced, 
however it provides an illustration of a control flow 
dependency that constitutes an overt flaw.  In the example, a 
constant value is written out to a Low external device (s3), 
depending on the High value read into variable v1 (s1). 

(s1) Read_dev (High, v1); 
(s2) if v1 > 0 then  
(s3)   Write_dev (Low, 1); 

The Low value assignment depends on a High source (v1) 
in the if block (s2), therefore an implicit flow from v1 to the 
Low device exists [19].  

C. Dynamic Slicing 
Slicing algorithms are used as a means of tracing data or 

control dependencies between variables and statements 
processed during program execution, traditionally for 
program debugging purposes [13].  Slicing algorithms 
generate an executable subset of a program, creating a 
subprogram whose behavior is the same as the original with 
respect to some variable.  They allow one to isolate the 
dependencies acting upon that variable.   

Slicing algorithms are categorized as either dynamic or 
static, depending on whether they take into account 
dependencies derived during one particular program 
execution path (dynamic), or for all possible execution paths 
(static).   



 

Since slicing techniques have been shown to be useful in 
tracking data and control dependencies, they can also provide 
a means of detecting potential overt flaws based on 
dependencies.  The access labels of variables can be used to 
determine potential security violations, based on the 
dependencies between these variables.  As an example, 
consider the following code snippet: 

(s1) if v3 > 17 then  
(s2)   v1 := 0; 
(s3) else if v4 = 5 then 
(s4)     v1 := 1; 
(s5)   else v1 := -1; 
(s6) v2 := v1; 

It is clear that v2 depends on v1 (s6).  Static slicing can 
show that v2 has a dependency on both v3 (s1) and v4 (s3), 
since there is a dependency from each of these to v1.  With 
dynamic slicing, however, not all execution paths will result 
in the same control dependencies, e.g., when the conditional 
expression in (s1) evaluates to true, the final value of v2 
depends on v3 but not on v4, since (s3) is never executed. 

III. SECURITY DOMAIN MODEL METHODOLOGY 
An overview of the Domain Model (DM) approach to 

program security verification is depicted in Fig. 1.  The DM 
includes the definition of program state and transitions 
between states, as well as security rules, specified as Alloy 
assertions, representing the generic policy a program must 
abide by.  The DM is composed of an invariant and a variable 
section, derived from the security rules and a target 
implementation, respectively.   

While there are numerous model checker tools currently 
available, we chose to use the Alloy specification language 
primarily because of its ability to represent program language 
abstractions simply and completely.  As Jackson [11] points 
out, referring to his approach as “lightweight formal 
methods,” Alloy models can be easily created and initially 
tested early in the development process, and then 
incrementally expanded.  He states that the goal of Alloy was 
to “obtain the benefits of traditional formal methods at lower 
cost, without requiring a big initial investment,” presumably 
in time and effort [11].  

As with traditional model checkers, Alloy deals with finite 
models, though it handles them very differently.  Model 
checkers typically build Kripke structures to represent the 
states and transitions of a program execution.  Such finite 
model structures have limits not easily adjusted by the user 
during analysis.  The Alloy Analyzer tool, however, affords 
the ability to easily increase the depth of analysis for models 
as they are developed and expanded.  For our approach, Alloy 
and its Analyzer provide a unique, ideally suited tool for 
creating and analyzing target program abstractions. 

In our approach, a base program is an abstraction of a 
target program implementation, and is written using 
Implementation Modeling Language (IML) notation [23].  
The IML defines a simple domain-specific language that 
captures the basic capabilities and constructs, with respect to 

security, of high-level programming languages.  Our intent is 
that IML enables the specification of relatively simple 
programs written in some common programming language, 
such as Ada, Java, or C++.  While future iterations of IML 
might handle other more advanced language features, e.g., 
concurrency, inheritance, etc., this initial language description 
was motivated by a requirement to represent the most 
essential security information flow properties in target 
program implementations.  This was our goal in describing 
IML syntax and constructs. 

By analyzing a model of the program, rather than actual 
program code, security verification can focus on elements of 
information flow analysis, e.g., I/O, access labels, direct file 
access, and timing (system clock), while ignoring other 
program details not pertinent to such analysis.   

In the current prototype, translation of the base program 
from an implementation is a manual step.  Developing a 
separate compiler to translate a high-level language program 
to IML is a difficult task, beyond the scope of this work.  The 
possibility must be considered that overt and covert flow 
violations existing in the original program implementation 
may be lost in the IML representation, and for now we 
depend on the knowledge of the manual translator to avoid 
this problem. 

The Invariant Model includes the definition of security 
rules, written as Alloy assertions, which must be enforced by 
the DM security policy.  Such policies are typically written in 
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natural language, and extraction of security rules is a manual 
step in our approach.  As currently implemented, the DM 
defines security rules associated with the Bell & LaPadula 
security model [2], i.e., flows from High to Low secrecy 
levels are not allowed. 

After the base program and Invariant Model with security 
rules are defined, the DM-Compiler compiles the base 
program from IML into state transition predicates, written in 
Alloy notation, creating the DM Implementation Model.  The 
DM-Compiler combines this with the Invariant Model to 
complete the DM.  The approach uses the Alloy Analyzer tool 
[1] for automated verification of the security rules, defined in 
the DM as Alloy assertions, to find execution paths within the 
DM that might violate the security policy or create covert 
channels.  In essence, it creates an interpreter for the specific 
base program, modeled by the DM.  A detailed description of 
the DM structure can be found at [23]. 

When analyzing a base program, the Alloy Analyzer 
performs an exhaustive search of all paths to a defined length 
(the scope, specifying the size of the models considered).  In 
fact, it performs symbolic execution of all base program paths 
with length up to the given scope limit.  In our generated DM, 
the scope is generated heuristically, based on the total number 
of statements in the base program.  This ensures that all 
execution paths of that length will be scrutinized.  It is 
assumed that the Alloy small scope hypothesis, which states 
that most flaws in models can be revealed on small instances 
[11], holds for information flow tracing in our approach. 

The Implementation Model of the DM is automatically 
generated by the DM-Compiler from a base program, and 
specifies the base program’s semantics in terms of statement 
signatures and state transitions.  From the base program, the 
DM-Compiler generates Value and Variable signatures, 
representing the number and value of unique constants 
explicitly present in the base program, and the variables used 
in the base program, respectively.  The DM-Compiler defines 
an Alloy signature that establishes a less-than relationship 
between the constant values, enabling comparison of values 
for equality and inequality in the base program. 

The DM-Compiler compiles each base program statement 
into a separate Alloy signature, based on the type of statement 
and associated variables and constants used.  From these 
statement signatures, it generates a predicate representing the 
state transition trace for the base program execution.  This 
predicate captures the semantics of the base program by 
specifying all possible sequences of statement executions for 
the program.  It also implements dependency tracking within 
the execution path.  A detailed example of this refinement 
from base program to Alloy signatures and transition 
predicate is provided at [23]. 

IV. TESTING AND ANALYSIS OF THE DM 
We tested the DM approach using base program examples 

with illicit information flows, and overt flaw and covert 
channel vulnerabilities.  In each case, a rule for discovering 
the illicit flow or covert channel is defined as an Alloy 
assertion, and an example base program is presented to 

illustrate the error or violation.  Each example represents the 
transmission of one bit of information; more complex 
examples would involve such concepts as looping, 
synchronization, etc., to provide the covert channels with a 
stream of bits. 

Our base program examples were evaluated using Alloy 
Analyzer 4.0.  In test runs, the Alloy Analyzer successfully 
found valid counterexamples for violations of each security 
rule assertion, i.e., an existing overt flaw or covert channel 
was detected in each case.  The complete Alloy models for 
these examples can be found at [21]. 

The “IllicitFlow” example [21] demonstrates an illicit 
information flow based on violation of the BLP simple 
security policy, i.e., a flow from a High object to a Low 
device.  The Alloy assertion below defines a security rule for 
such a policy that examines each execution state, and 
evaluates to true whenever the state (s) is the result of a 
Write_dev operation to a Low device, from a variable whose 
access label is Low.  The DM searches for execution paths for 
which this assertion is not true, i.e., those with a flow that 
violates the security rule. 

assert correct_access1{ 
 all s: State | Property1[s] } 
 
pred Property1 [s: State]{ 
 let stm = s.stmt | { 
  (stm.type = Write_dev and 
   stm.subject_label = Low and 
    stm.source in Variable) 
  => s.access[stm.source] = Low } 
} 

The base program below is an example of a violation of 
this security assertion.  The program first reads a value into 
variable x1 at a High access level, and then checks the 
variable’s value against a constant.  Based on the result of this 
conditional check, the value in x1 is either written to a High 
or a Low external device.  

(s1) Read_dev (High, x1); 
(s2) if (x1 > 3) then 
(s3)   Write_dev (High, x1); 
(s4) else Write_dev (Low, x1); 
(s5) Stop; 

The violation occurs when the conditional (s2) evaluates to 
false, thus the value of x1 is written to the Low device (s4), 
creating a flow from High to Low.  The Alloy Analyzer 
detects this situation, and reports a violation of the security 
assertion through statements (s1)(s2)(s4). 

Further examples include “OvertFlaw” [21], which 
illustrates an overt flaw based on a control flow dependency.  
This example shows an exploitation scenario that culminates 
with an IML Write_dev operation, where the variables written 
to the external device have been influenced by values at a 
higher level than that of the device itself.  The approach uses 
dynamic slicing techniques to discover these flow violations. 

The “StorageChannel” example [21] describes a classic 
covert storage channel [16] resulting from access to the direct 



 

file by a Low subject (who uses a PutDirectFile operation), 
after a High subject has caused it to be full.  The Alloy 
security assertion defines logic to capture this vulnerability by 
checking for states where the label of the direct file key slot 
(keyLabel) is higher than that of the subject (subject_label).  
The nexus of this covert channel is that High can write to the 
internal resource full (indirectly), and Low can observe it. 

Our “TimingChannel” example [21] describes a covert 
timing channel that occurs when a Low subject twice checks 
the system clock, between which a High subject prevents the 
Low subject from executing through execution of a 
Read_dev/Write_dev or direct file operation.  Thus, when the 
Low subject next runs, it can examine the clock to detect this 
interference with its access to the CPU; these channels are 
thus often called CPU channels.  The crux of this covert 
channel is that a Low subject, the covert channel receiver, has 
been allowed to observe (by examining the clock) a change in 
some internal resource (the CPU busy state), which was 
indirectly affected by the actions of a High subject, the covert 
channel sender. 

V. RELATED WORK 
Previous research in modeling secure information flow and 

access control, and in covert channel analysis is described 
below.  We have extended previous work by integrating a 
language for formally specifying an implementation with a 
framework for expressing security policies, particularly with 
respect to covert channel rules and control dependency flaws. 

Classic work on secure information flow [6][7] provides a 
foundation for this research, including the notion of partial 
ordering of security classes based on the dominance 
relationship, the idea of labeling state variables to track such 
flows, as a way to certify a program.  

Other approaches have viewed no difference between 
classes of covert channels, or between covert and overt flows 
for that matter.  These approaches rely on the concept of 
noninterference, which states that the actions of one subject 
can have no effect on the output of a lower subject in a 
system.  Goguen & Meseguer [9] described that security 
policies can be defined in terms of only noninterference 
assertions, rather than by the combination of access control 
and covert channel restrictions.  Their ideas were further 
expanded in [10].  

Volpano et al [27] furthered the language-based flow 
analysis work by defining a linguistic type system for secure 
flow, and rigorously proving the soundness of the core 
language with respect to noninterference.  Well-typed 
programs are then guaranteed to be noninterfering – and thus 
secure by this definition – which was the basis for much 
related research, summarized by Sabelfeld & Myers in their 
survey on language-based information flow systems [19].   

Other work in using sound type systems for secure 
information flow has focused on type inference, in which the 
flow of information is automatically determined based on 
semantic analysis [5][24].  Eventually, Smith & Thober [25] 
enhanced the linguistic model of secure information flow 
such that sensitivity labels need be assigned only at I/O 

boundaries, while the labels of variables and constants, as 
well as data information flow through a program’s execution, 
are automatically derived relative to the I/O (device) labels.   

Our DM-Compiler similarly tracks the flow of data based 
on the input device label with no requirement to annotate the 
code in any other way.  Our work differs from the linguistic 
type system approach in that, rather than constructing a type-
safe language with which to write secure programs, we apply 
abstract interpretation to the analysis of programs in order to 
detect potential problems and otherwise demonstrate their 
security with respect to select security properties.  Our 
approach is based on exhaustive information flow tracing of 
all execution paths in a program, to a certain length 
(determined by the model scope of Alloy).  This tracing is 
applied for both overt and covert channel static analysis, 
using dynamic slicing techniques where appropriate such that 
read-up, as well as violations of noninterference, are detected 
[28].  Additionally, we provide a compiler to generate a 
formal specification of a program.  Although it yet lacks a 
formal soundness proof, the DM-Compiler enables generation 
of formal logic that can be automatically analyzed (using the 
DM) for secure information flows. 

VI. DISCUSSION AND FUTURE WORK 
This paper has provided a survey of ongoing research to 

develop a formal security domain model for analyzing 
programs for information flow vulnerabilities, including 
exploitable covert channels and overt access control flaws.  
The approach defines a formal security Domain Model (DM) 
that facilitates specification of security vulnerabilities, 
independent of program implementation.   

Although encoding and checking program semantics and 
properties is not in itself revolutionary, we feel that this work 
is evolutionary in extending previous work in the area of 
information flow tracking based on a precise, formal 
definition for overt information flaws and covert channels.  
Our model provides a means of conducting automated static 
analysis of a program implementation within a finite scope of 
execution paths.  Flow control dependencies and related overt 
flaws are analyzed using dynamic slicing techniques.  This 
paper has shown the feasibility of this approach on a specific 
set of examples, within a finite scope. 

The Alloy Analyzer guarantees, by the small scope 
hypothesis [11], that most program errors should be revealed 
in relatively small counterexamples.  Using the Analyzer to 
perform static analysis of the DM provides assurance that, 
within a specified search scope, a counterexample will be 
found when one exists.  This means that false negatives and 
false positives are eliminated within the defined scope.  

Future work will focus on formally proving the DM, and on 
extending its capabilities.  In the former case, formal semantic 
analysis of the IML and DM-Compiler is needed to ensure 
that the artifacts of each (e.g., the base program and DM 
Implementation Model) are accurate refinements of the 
original target implementation.  As pointed out in [19], 
information flow analysis should take place “as close to the 
executed code as possible.”  Analysis of a compiled 



 

abstraction of the execution code creates a requirement for 
trustworthiness in the compiler, as well as the code itself.  In 
addition to semantic analysis of these DM components, the 
results of the Alloy Analyzer acting on a compiled DM must 
be formally proven to be both sound and complete, i.e., that 
they produce neither false positives nor false negatives, 
respectively. 

Work has begun to implement the notion of a trusted 
subject into the DM.  This class of subject is trusted to 
circumvent certain access control policy rules, to allow such 
actions as regrading of objects, e.g., downgrading a High 
labeled object to a Low level.  This requires defining a 
separate trusted subject policy within the DM, and the ability 
for the model to administer multiple policies, i.e., for regular 
and trusted subjects. 

Other planned work includes expansion of the DM to 
enable support for dynamic security policies [16].  This 
concept would allow the DM to support multiple polices in 
existence during program execution, with the ability of a 
system to adapt different policies based on a dynamically 
changing security environment [17]. 
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