

A Security Domain Model for Static Analysis and Verification of Software Programs

Alan B. Shaffer
Naval Postgraduate School

Computer Science Dept
Monterey, CA, USA

abshaffe@nps.edu

Abstract- Unauthorized information flows can result from

malicious software exploiting covert channels and overt flaws
in access control design. To address this problem, we present
a precise, formal definition for information flow that relies on
control flow dependency tracing through program execution,
and extends Dennings’ and follow-on classic work in secure
information flow [7][19][27]. We describe a formal security
Domain Model (DM) for conducting static analysis of
programs to identify illicit information flows, access control
flaws and covert channel vulnerabilities. The DM is
comprised of an Invariant Model, which defines the generic
concepts of program state, information flow, and security
policy rules; and an Implementation Model, which specifies
the behavior of a target program. The DM is compiled from
a representation of the program, written in a domain-specific
Implementation Modeling Language (IML), and a
specification of the security policy written in Alloy. The Alloy
Analyzer tool is used to perform static analysis of the DM to
automatically detect potential covert channel vulnerabilities
and security policy violations in the target program.

I. INTRODUCTION
Identification of exploitable covert channel vulnerabilities

is vital in the development of systems intended to enforce
mandatory access control policies, and in fact is required for
the successful evaluation of such systems at the highest levels
of assurance [3][18]. This paper presents a precise, formal
definition for various types of covert channels, which
depends upon a representation of control flow dependencies,
thus extending classic work in this area [7][19][27]. A
security domain model is described for formally representing
different types of covert channels, and for conducting static
analysis1 of certain program implementations. This model
employs dynamic slicing techniques to analyze programs for
the existence of access control flaws, where appropriate.

Widely accepted evaluation standards [3][4][18] require
that high assurance secure systems be designed, developed,
verified and tested using rigorous processes and formal
methods. This evaluation process must include
demonstration of correct correspondence between system
representations at various levels of abstraction, e.g., security

1 In this context, static analysis refers to analysis of program code without
actual program execution.

policy objectives, security specifications, and program
implementation. The Common Criteria for Information
Technology Security Evaluation requires that systems at
EAL-5 or higher2 undergo covert channel analysis to ensure
that the system is capable of enforcing its security policy in
terms of covert as well as overt interactions [3].

Formal security models are often based on concepts of
program secure state and state transitions. High assurance
evaluation standards [3][4] require a formal verification that
the state transitions resulting from program execution
preserve the security properties defined by a policy. Our
approach analyzes programs for preservation of security
properties through state transitions, and advances the
concepts of secure information flow in classic work by
Denning and others [7][27], by describing automated
techniques for information flow static analysis. Previous
work in developing our approach has demonstrated the ability
to detect illicit information flow security violations [22], and
covert channel and overt flaw vulnerabilities based on control
flow dependency analysis [23].

The Implementation Modeling Language (IML), the first
novel element in this approach, is a language that supports
basic information processing via assignment statements,
conditional and loop statements, read/write statements, file
random access, and access to a system clock. Program
implementations represented in IML are called base
programs, and they provide a standardized notation for
conducting static analysis of target programs for adherence to
a security policy.

The second novel element in this work is the definition of a
security Domain Model (DM), represented as an Alloy
[1][11] specification. The DM provides a framework for
specifying program state and state transitions, as well as
security-related concepts such as security policy, information
flow, access control, and covert channel vulnerabilities. The
DM is comprised of an Invariant Model, which defines the
generic concepts of program state, information flow, and
security policy; and an Implementation Model, which
specifies the behavior of the base program. A specialized
DM-Compiler was developed to translate a base program in
IML into an Implementation Model, and to integrate it with
the Invariant Model to form a complete DM specification.
The DM is verified using the Alloy Analyzer, which

2 EAL-7 is the highest Common Criteria evaluation assurance level.

identifies execution paths where the security policy rules are
violated.

Whereas many previous security models capture
information flow between objects and subjects, the DM does
not explicitly define an object, but implements this concept
through variables. An access table records sensitivity labels
for program variables as a means of tracking information
flow across state transitions. These labels indicate the
sensitivity of data stored within a variable, and may change
over time as data flows through the system.

The DM captures the concept of information flows with
respect to a system subject for input to and output from an
external device or random access file. The subject is
essentially the executor of the statement, and has a defined
access label. The policy rules define legal information flows
based on the relationship between the subject label, and that
of the I/O source/destination variable, e.g., in a Write_dev
operation, a subject label must dominate a source variable
label, in order for the variable to be successfully accessed for
writing. This requirement might seem counter to the BLP *-
property, however in our approach a Write_dev is modeled as
a flow from a source variable to a target device, with the latter
specified at the level of the subject label.

Section 2 of this paper provides background discussion on
covert channels, control flow dependencies, and dynamic
program slicing. Section 3 presents an overview of the DM
methodology for modeling programs and security policies.
Section 4 summarizes our test results with several program
examples. Sections 5 and 6 discuss related work, and planned
future work in this research.

II. BACKGROUND
We discuss several computer security concepts relevant to

this research.

A. Covert Channels
Covert channels use entities other than data objects as a

way to transfer information between system subjects,
specifically entities not intended for information transfer
[12][14]. Such channels allow processes to transfer
information in a manner that violates a security policy [8].

An operating system may virtualize a shared physical
resource so that each subject, or equivalence class of subjects,
perceives that it has exclusive access to the resource. A
covert channel can result from the incomplete virtualization
of a resource such that some attribute of the resource remains
shared, indirectly.

A common taxonomy of covert channels defines them as
being either storage or timing channels [20]. For both storage
and timing channels the sender and receiver (typically
subjects) must have [12]:

1. Indirect access to an attribute of a shared resource,
which the sender can modify, and the receiver can
view.

2. A means to initiate and synchronize their actions.

In our analysis, we consider that the primary distinction
between a covert storage channel and a covert timing channel

is the means by which the receiver observes the change in the
attribute:

3. Storage – the receiver views an error message, or other
information placed in its address space by the system.

4. Timing – the receiver views changes to the relative
timing of “legal” events.

The attribute in question forms a point of interference [9]
between the subjects. To be the basis for an exploitable
covert channel, the interference must also be contrary to the
computer security policy – i.e., with a mandatory access
control (MAC) policy, the sender’s security level must be
higher than the receiver’s level (with respect to
confidentiality) [26].

B. Control Flow Dependency Flaws
Covert storage channels based on control flow

dependencies often involve the indirect use of internal
resources, such as buffers or non-exported files in a program
control decision, to pass information from High to Low
[12][14][15]. In addition to this, our approach is capable of
detecting overt flaws based on control flow dependencies.

The approach here for discovering flaws based on control
dependencies employs a dynamic slicing analysis. To
determine the existence of such a dependency within the
program, the chain of statements preceding a value
assignment is examined with respect to the access labels of
the variables in these statements. If the context of a previous
statement includes variables that are higher than the
destination, then there is an overt flaw.

The code snippet below would not be classified as having a
covert channel since internal attributes are not referenced,
however it provides an illustration of a control flow
dependency that constitutes an overt flaw. In the example, a
constant value is written out to a Low external device (s3),
depending on the High value read into variable v1 (s1).

(s1) Read_dev (High, v1);
(s2) if v1 > 0 then
(s3) Write_dev (Low, 1);

The Low value assignment depends on a High source (v1)
in the if block (s2), therefore an implicit flow from v1 to the
Low device exists [19].

C. Dynamic Slicing
Slicing algorithms are used as a means of tracing data or

control dependencies between variables and statements
processed during program execution, traditionally for
program debugging purposes [13]. Slicing algorithms
generate an executable subset of a program, creating a
subprogram whose behavior is the same as the original with
respect to some variable. They allow one to isolate the
dependencies acting upon that variable.

Slicing algorithms are categorized as either dynamic or
static, depending on whether they take into account
dependencies derived during one particular program
execution path (dynamic), or for all possible execution paths
(static).

Since slicing techniques have been shown to be useful in
tracking data and control dependencies, they can also provide
a means of detecting potential overt flaws based on
dependencies. The access labels of variables can be used to
determine potential security violations, based on the
dependencies between these variables. As an example,
consider the following code snippet:

(s1) if v3 > 17 then
(s2) v1 := 0;
(s3) else if v4 = 5 then
(s4) v1 := 1;
(s5) else v1 := -1;
(s6) v2 := v1;

It is clear that v2 depends on v1 (s6). Static slicing can
show that v2 has a dependency on both v3 (s1) and v4 (s3),
since there is a dependency from each of these to v1. With
dynamic slicing, however, not all execution paths will result
in the same control dependencies, e.g., when the conditional
expression in (s1) evaluates to true, the final value of v2
depends on v3 but not on v4, since (s3) is never executed.

III. SECURITY DOMAIN MODEL METHODOLOGY
An overview of the Domain Model (DM) approach to

program security verification is depicted in Fig. 1. The DM
includes the definition of program state and transitions
between states, as well as security rules, specified as Alloy
assertions, representing the generic policy a program must
abide by. The DM is composed of an invariant and a variable
section, derived from the security rules and a target
implementation, respectively.

While there are numerous model checker tools currently
available, we chose to use the Alloy specification language
primarily because of its ability to represent program language
abstractions simply and completely. As Jackson [11] points
out, referring to his approach as “lightweight formal
methods,” Alloy models can be easily created and initially
tested early in the development process, and then
incrementally expanded. He states that the goal of Alloy was
to “obtain the benefits of traditional formal methods at lower
cost, without requiring a big initial investment,” presumably
in time and effort [11].

As with traditional model checkers, Alloy deals with finite
models, though it handles them very differently. Model
checkers typically build Kripke structures to represent the
states and transitions of a program execution. Such finite
model structures have limits not easily adjusted by the user
during analysis. The Alloy Analyzer tool, however, affords
the ability to easily increase the depth of analysis for models
as they are developed and expanded. For our approach, Alloy
and its Analyzer provide a unique, ideally suited tool for
creating and analyzing target program abstractions.

In our approach, a base program is an abstraction of a
target program implementation, and is written using
Implementation Modeling Language (IML) notation [23].
The IML defines a simple domain-specific language that
captures the basic capabilities and constructs, with respect to

security, of high-level programming languages. Our intent is
that IML enables the specification of relatively simple
programs written in some common programming language,
such as Ada, Java, or C++. While future iterations of IML
might handle other more advanced language features, e.g.,
concurrency, inheritance, etc., this initial language description
was motivated by a requirement to represent the most
essential security information flow properties in target
program implementations. This was our goal in describing
IML syntax and constructs.

By analyzing a model of the program, rather than actual
program code, security verification can focus on elements of
information flow analysis, e.g., I/O, access labels, direct file
access, and timing (system clock), while ignoring other
program details not pertinent to such analysis.

In the current prototype, translation of the base program
from an implementation is a manual step. Developing a
separate compiler to translate a high-level language program
to IML is a difficult task, beyond the scope of this work. The
possibility must be considered that overt and covert flow
violations existing in the original program implementation
may be lost in the IML representation, and for now we
depend on the knowledge of the manual translator to avoid
this problem.

The Invariant Model includes the definition of security
rules, written as Alloy assertions, which must be enforced by
the DM security policy. Such policies are typically written in

Manually
Extract

Manually
Extract

Page 1

Implementation
(Ada, Java, C++, …)

Security Policy
(natural language)

Base Program
(IML)

Invariant Model
(Alloy)

DM-Compiler
(IML -> Alloy)

Alloy Analyzer

Execution paths
that violate security

properties

Domain Model
(Alloy)

 - Implementation Model
 - Invariant Section

Fig. 1. Domain model approach to system security verification.

natural language, and extraction of security rules is a manual
step in our approach. As currently implemented, the DM
defines security rules associated with the Bell & LaPadula
security model [2], i.e., flows from High to Low secrecy
levels are not allowed.

After the base program and Invariant Model with security
rules are defined, the DM-Compiler compiles the base
program from IML into state transition predicates, written in
Alloy notation, creating the DM Implementation Model. The
DM-Compiler combines this with the Invariant Model to
complete the DM. The approach uses the Alloy Analyzer tool
[1] for automated verification of the security rules, defined in
the DM as Alloy assertions, to find execution paths within the
DM that might violate the security policy or create covert
channels. In essence, it creates an interpreter for the specific
base program, modeled by the DM. A detailed description of
the DM structure can be found at [23].

When analyzing a base program, the Alloy Analyzer
performs an exhaustive search of all paths to a defined length
(the scope, specifying the size of the models considered). In
fact, it performs symbolic execution of all base program paths
with length up to the given scope limit. In our generated DM,
the scope is generated heuristically, based on the total number
of statements in the base program. This ensures that all
execution paths of that length will be scrutinized. It is
assumed that the Alloy small scope hypothesis, which states
that most flaws in models can be revealed on small instances
[11], holds for information flow tracing in our approach.

The Implementation Model of the DM is automatically
generated by the DM-Compiler from a base program, and
specifies the base program’s semantics in terms of statement
signatures and state transitions. From the base program, the
DM-Compiler generates Value and Variable signatures,
representing the number and value of unique constants
explicitly present in the base program, and the variables used
in the base program, respectively. The DM-Compiler defines
an Alloy signature that establishes a less-than relationship
between the constant values, enabling comparison of values
for equality and inequality in the base program.

The DM-Compiler compiles each base program statement
into a separate Alloy signature, based on the type of statement
and associated variables and constants used. From these
statement signatures, it generates a predicate representing the
state transition trace for the base program execution. This
predicate captures the semantics of the base program by
specifying all possible sequences of statement executions for
the program. It also implements dependency tracking within
the execution path. A detailed example of this refinement
from base program to Alloy signatures and transition
predicate is provided at [23].

IV. TESTING AND ANALYSIS OF THE DM
We tested the DM approach using base program examples

with illicit information flows, and overt flaw and covert
channel vulnerabilities. In each case, a rule for discovering
the illicit flow or covert channel is defined as an Alloy
assertion, and an example base program is presented to

illustrate the error or violation. Each example represents the
transmission of one bit of information; more complex
examples would involve such concepts as looping,
synchronization, etc., to provide the covert channels with a
stream of bits.

Our base program examples were evaluated using Alloy
Analyzer 4.0. In test runs, the Alloy Analyzer successfully
found valid counterexamples for violations of each security
rule assertion, i.e., an existing overt flaw or covert channel
was detected in each case. The complete Alloy models for
these examples can be found at [21].

The “IllicitFlow” example [21] demonstrates an illicit
information flow based on violation of the BLP simple
security policy, i.e., a flow from a High object to a Low
device. The Alloy assertion below defines a security rule for
such a policy that examines each execution state, and
evaluates to true whenever the state (s) is the result of a
Write_dev operation to a Low device, from a variable whose
access label is Low. The DM searches for execution paths for
which this assertion is not true, i.e., those with a flow that
violates the security rule.

assert correct_access1{
 all s: State | Property1[s] }

pred Property1 [s: State]{
 let stm = s.stmt | {
 (stm.type = Write_dev and
 stm.subject_label = Low and
 stm.source in Variable)
 => s.access[stm.source] = Low }
}

The base program below is an example of a violation of
this security assertion. The program first reads a value into
variable x1 at a High access level, and then checks the
variable’s value against a constant. Based on the result of this
conditional check, the value in x1 is either written to a High
or a Low external device.

(s1) Read_dev (High, x1);
(s2) if (x1 > 3) then
(s3) Write_dev (High, x1);
(s4) else Write_dev (Low, x1);
(s5) Stop;

The violation occurs when the conditional (s2) evaluates to
false, thus the value of x1 is written to the Low device (s4),
creating a flow from High to Low. The Alloy Analyzer
detects this situation, and reports a violation of the security
assertion through statements (s1)(s2)(s4).

Further examples include “OvertFlaw” [21], which
illustrates an overt flaw based on a control flow dependency.
This example shows an exploitation scenario that culminates
with an IML Write_dev operation, where the variables written
to the external device have been influenced by values at a
higher level than that of the device itself. The approach uses
dynamic slicing techniques to discover these flow violations.

The “StorageChannel” example [21] describes a classic
covert storage channel [16] resulting from access to the direct

file by a Low subject (who uses a PutDirectFile operation),
after a High subject has caused it to be full. The Alloy
security assertion defines logic to capture this vulnerability by
checking for states where the label of the direct file key slot
(keyLabel) is higher than that of the subject (subject_label).
The nexus of this covert channel is that High can write to the
internal resource full (indirectly), and Low can observe it.

Our “TimingChannel” example [21] describes a covert
timing channel that occurs when a Low subject twice checks
the system clock, between which a High subject prevents the
Low subject from executing through execution of a
Read_dev/Write_dev or direct file operation. Thus, when the
Low subject next runs, it can examine the clock to detect this
interference with its access to the CPU; these channels are
thus often called CPU channels. The crux of this covert
channel is that a Low subject, the covert channel receiver, has
been allowed to observe (by examining the clock) a change in
some internal resource (the CPU busy state), which was
indirectly affected by the actions of a High subject, the covert
channel sender.

V. RELATED WORK
Previous research in modeling secure information flow and

access control, and in covert channel analysis is described
below. We have extended previous work by integrating a
language for formally specifying an implementation with a
framework for expressing security policies, particularly with
respect to covert channel rules and control dependency flaws.

Classic work on secure information flow [6][7] provides a
foundation for this research, including the notion of partial
ordering of security classes based on the dominance
relationship, the idea of labeling state variables to track such
flows, as a way to certify a program.

Other approaches have viewed no difference between
classes of covert channels, or between covert and overt flows
for that matter. These approaches rely on the concept of
noninterference, which states that the actions of one subject
can have no effect on the output of a lower subject in a
system. Goguen & Meseguer [9] described that security
policies can be defined in terms of only noninterference
assertions, rather than by the combination of access control
and covert channel restrictions. Their ideas were further
expanded in [10].

Volpano et al [27] furthered the language-based flow
analysis work by defining a linguistic type system for secure
flow, and rigorously proving the soundness of the core
language with respect to noninterference. Well-typed
programs are then guaranteed to be noninterfering – and thus
secure by this definition – which was the basis for much
related research, summarized by Sabelfeld & Myers in their
survey on language-based information flow systems [19].

Other work in using sound type systems for secure
information flow has focused on type inference, in which the
flow of information is automatically determined based on
semantic analysis [5][24]. Eventually, Smith & Thober [25]
enhanced the linguistic model of secure information flow
such that sensitivity labels need be assigned only at I/O

boundaries, while the labels of variables and constants, as
well as data information flow through a program’s execution,
are automatically derived relative to the I/O (device) labels.

Our DM-Compiler similarly tracks the flow of data based
on the input device label with no requirement to annotate the
code in any other way. Our work differs from the linguistic
type system approach in that, rather than constructing a type-
safe language with which to write secure programs, we apply
abstract interpretation to the analysis of programs in order to
detect potential problems and otherwise demonstrate their
security with respect to select security properties. Our
approach is based on exhaustive information flow tracing of
all execution paths in a program, to a certain length
(determined by the model scope of Alloy). This tracing is
applied for both overt and covert channel static analysis,
using dynamic slicing techniques where appropriate such that
read-up, as well as violations of noninterference, are detected
[28]. Additionally, we provide a compiler to generate a
formal specification of a program. Although it yet lacks a
formal soundness proof, the DM-Compiler enables generation
of formal logic that can be automatically analyzed (using the
DM) for secure information flows.

VI. DISCUSSION AND FUTURE WORK
This paper has provided a survey of ongoing research to

develop a formal security domain model for analyzing
programs for information flow vulnerabilities, including
exploitable covert channels and overt access control flaws.
The approach defines a formal security Domain Model (DM)
that facilitates specification of security vulnerabilities,
independent of program implementation.

Although encoding and checking program semantics and
properties is not in itself revolutionary, we feel that this work
is evolutionary in extending previous work in the area of
information flow tracking based on a precise, formal
definition for overt information flaws and covert channels.
Our model provides a means of conducting automated static
analysis of a program implementation within a finite scope of
execution paths. Flow control dependencies and related overt
flaws are analyzed using dynamic slicing techniques. This
paper has shown the feasibility of this approach on a specific
set of examples, within a finite scope.

The Alloy Analyzer guarantees, by the small scope
hypothesis [11], that most program errors should be revealed
in relatively small counterexamples. Using the Analyzer to
perform static analysis of the DM provides assurance that,
within a specified search scope, a counterexample will be
found when one exists. This means that false negatives and
false positives are eliminated within the defined scope.

Future work will focus on formally proving the DM, and on
extending its capabilities. In the former case, formal semantic
analysis of the IML and DM-Compiler is needed to ensure
that the artifacts of each (e.g., the base program and DM
Implementation Model) are accurate refinements of the
original target implementation. As pointed out in [19],
information flow analysis should take place “as close to the
executed code as possible.” Analysis of a compiled

abstraction of the execution code creates a requirement for
trustworthiness in the compiler, as well as the code itself. In
addition to semantic analysis of these DM components, the
results of the Alloy Analyzer acting on a compiled DM must
be formally proven to be both sound and complete, i.e., that
they produce neither false positives nor false negatives,
respectively.

Work has begun to implement the notion of a trusted
subject into the DM. This class of subject is trusted to
circumvent certain access control policy rules, to allow such
actions as regrading of objects, e.g., downgrading a High
labeled object to a Low level. This requires defining a
separate trusted subject policy within the DM, and the ability
for the model to administer multiple policies, i.e., for regular
and trusted subjects.

Other planned work includes expansion of the DM to
enable support for dynamic security policies [16]. This
concept would allow the DM to support multiple polices in
existence during program execution, with the ability of a
system to adapt different policies based on a dynamically
changing security environment [17].

REFERENCES
[1] The Alloy Analyzer. (2000). Retrieved March 3, 2008, from the

Alloy Analyzer website: http://alloy.mit.edu/.
[2] Bell, D., & LaPadula, L. (1973). Secure Computer Systems:

Mathematical Foundations and Model, MITRE Report. The
MITRE Corp.

[3] Common Criteria for Information Technology Security
Evaluation, Part 1: Introduction and General Model, version
3.1. Document number CCMB-2006-09-001. September 2006.

[4] Department of Defense Trusted Computer Security Evaluation
Criteria, DOD 5200.28-STD, National Computer Security
Center, December 1985.

[5] Deng, Z., & Smith, G. (2006). Type inference and informative
error reporting for secure information flow. Proceedings of the
44th ACM Southeast Conference (pp. 543-548). Melbourne,
Florida.

[6] Denning, D. (1976). A lattice model of secure information
flow. Communications of the ACM, 19(5), 236-242. ACM
Press.

[7] Denning, D. E., & Denning, P. J. (1977). Certification of
programs for secure information flow. Communications of the
ACM, 20(7), 504-512. ACM Press.

[8] Gligor, V. (1993). A guide to understanding covert channel
analysis of trusted systems. Technical Rep. NCSC-TG-030,
National Computer Security Center, Ft. Meade, MD, USA.

[9] Goguen, J., & Meseguer, J. (1982). Security policies and
security models. Proceedings of the IEEE Symposium on
Security and Privacy (pp. 11-20). IEEE Computer Society
Press.

[10] Haigh, J.T., & Young, W.D. (1987). Extending the
noninterference version of MLS for SAT. IEEE Transactions
on Software Engineering, SE-13(2), 141-150.

[11] Jackson, D. (2006). Software Abstractions: Logic, Language,
and Analysis. Cambridge, MA, USA, and London, England:
MIT Press.

[12] Kemmerer, R. (1983). Shared resource matrix methodology: An
approach to identifying storage and timing channels. ACM
Transactions on Computer Systems, 1(3), August 1983. ACM
Press.

[13] Korel, B., & Rilling, J. (1997). Dynamic program slicing in
understanding of program execution. Proceedings of the 5th
International Workshop on Program Comprehension (pp. 80-
90). Dearborn, MI, USA: IEEE Computer Society.

[14] Lampson, B. W. (1973). A note on the confinement problem.
Communications of the ACM 16(10), 613-615. ACM Press.

[15] Levin, T., & Clark, P. (2004). A note regarding covert
channels. Proceedings of the 6th Workshop on Education in
Computer Security (pp. 11-15). Monterey, CA, USA.

[16] Levin, T., Irvine, C., & Spyropoulou, E. (2006). Quality of
security service: Adaptive security. Handbook of Information
Security (H. Bidgoli, ed.), vol. 3, pp. 1016–1025, Hoboken, NJ:
John Wiley and Sons.

[17] National Security Agency IA Directorate. (2004). Global
Information Grid Information Assurance Reference
Capability/Technology Roadmap, Version 1.0.

[18] National Security Agency. (2007). U.S. Government Protection
Profile for Separation Kernels in Environments Requiring High
Robustness, Version 1.03.

[19] Sabelfeld, A., & Myers. A. (2003). Language-based
information-flow security. IEEE Journal on Selected Areas in
Communications, 21(1), 5-19. IEEE Press.

[20] Schaefer, M., Gold, B., Linde, R., & Scheid, J. (1977). Program
confinement in KVM/370. Proceedings of the 1977 Annual
ACM Conference (pp. 404-410). ACM Press.

[21] Security Domain Model Project. (2008). Retrieved March 5,
2008, from Naval Postgraduate School (NPS) Center for
Information Systems Security Studies and Research (CISR)
Projects website: http://cisr.nps.edu/projects/sdm.html.

[22] Shaffer, A., Auguston, M., Irvine, C. and Levin, T. (2007).
Toward a security domain model for static analysis and
verification of information systems. Proceedings of the 7th
OOPSLA Workshop on Domain-Specific Modeling (pp. 160-
171). Montreal, Canada.

[23] Shaffer, A., Auguston, M., Irvine, C., and Levin, T. (2008). A
security domain model to assess software for exploitable covert
channels. Manuscript submitted for publication.

[24] Simonet, V. (2003). Type inference with structural subtyping:
A faithful formalization of an efficient constraint solver.
Proceedings of the Asian Symposium on Programming
Languages and Systems (APLAS'03), vol 2895 (pp. 283-302).
Beijing, China: Springer-Verlag.

[25] Smith, S., & Thober, M. (2007). Improving usability of
information flow security in java. Proceedings of the 2007
Workshop on Programming Languages and Analysis for
Security (pp. 11-20). ACM Press, New York, NY.

[26] Tsai, C., Gligor, V., & Chandersekaran, C. (1990). On the
identification of covert storage channels in secure systems.
IEEE Transactions on Software Engineering, 16(6), 569-580.
IEEE Press.

[27] Volpano, D., Smith, G., & Irvine, C. (1996). A sound type
system for secure flow analysis. Journal of Computer Security,
4(3), 167-187.

[28] von Oheimb, D. (2004). Information flow control revisited:
Noninfluence = noninterference + nonleakage. Proceedings of
the 9th European Symposium on Research Computer Security
(pp. 225-243). Sophia Antipolis, France.

