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Abstract: Cyberspace is recognized as a critical domain in modern warfare. The ability of military forces to maintain and 
secure their own operational networks, while simultaneously degrading or denying the ability of adversaries to operate their 
networks, is a critical strategic objective for military planners and leaders. Conducting effective offensive cyber operations 
(OCO) against sophisticated adversary networks requires the ability to develop, test, and rehearse cyber-attack actions 
before they are employed operationally. This requirement is well understood and practiced in the physical warfare domains, 
where ships, aircraft and tanks can exercise their capabilities against physical targets; it is not, however, well refined in the 
cyber domain. This research introduces a framework to address this need, and demonstrates a prototype for cyber-attack 
scenario development and rehearsal in a virtual network environment. By extending the earlier work of the Naval 
Postgraduate School’s Malicious Activity Simulation Tool (MAST), a distributed client-server based software tool designed to 
launch inert malware attacks on live networks, we were able to demonstrate cyber-attack scenarios based on temporal 
specificity and target discrimination as attack parameters. Our prototype accurately models an adversary network in a virtual 
environment, providing the ability to develop cyber-attack actions to achieve specific cyber effects against hosts on the 
intended target network. The architecture allows cyber forces to rehearse specific cyber actions prior to launching a cyber-
attack, in order to provide a more accurate assessment of the efficacy of these actions against a realistic model of the target 
network. This framework allows military forces to better train and prepare for cyber operations to help achieve cyber 
superiority in modern warfare. 
 
Keywords: offensive cyber operations, simulated malware, cyber-attack rehearsal, cyber effects development, virtualized 
networks 

1.� Introduction 
For today’s military, the use of offensive cyber operations (OCO) has grown dramatically in recent years, and the 
Internet has become the military’s “theater of spying, sabotage and war” (Gellman and Nakashima, 2013). 
Computer networks are an essential element of combat capability, providing command and control, 
communications, and logistics, as well as computer network attack and exploitation. Given the importance of 
computer networks in carrying out a broad spectrum of warfare functions, they have become high priority 
targets in modern military conflicts, and by extension, the exploitation of enemy networks has become a key 
military objective.  
 
In the traditional warfare domains, the ability to ascertain the capabilities and orders-of-battle (OOB) of 
adversary forces is well understood. Thorough knowledge of an enemy’s forces allows for more accurate and 
complete testing and refinement of warfare capabilities, which facilitates effective operational planning. In the 
cyber domain, however, the ability to understand an adversary’s capabilities, vulnerabilities, and OOB is less 
defined, and the ability to develop and accurately test offensive cyber capabilities against an enemy’s network 
is not as mature. OCO missions are often executed without the ability to test and rehearse their efficacy against 
a realistic model of a target network. Having such a capability could help cyber operators better understand the 
effects of specific cyber-attacks, including their impact on an adversary’s systems and operations, and the 
secondary and collateral effects that could result.  
 
To address these gaps we have developed a software environment for creating, testing, and rehearsing 
simulated cyber-attack scenarios against virtualized models of an adversary network. The key contributions of 
this research are the development of a virtual environment to support development and testing of offensive 
cyber-attack scenarios, a sophisticated control mechanism for developing simulated malware (SimWare) 
modules, and the enumeration of simulated malware modules to be used in developing cyber-attacks. 
 
Section 2 of this paper describes previously work related to this research. Section 3 describes the architecture 
of the MAST framework, and section 4 describes key design requirements for the creation of a virtual 
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environment in which to conduct simulated cyber-attacks against a virtualized adversary network. Section 5 
details the test environment, the creation of the new software modules, and the testing process. Section 6 
concludes with a discussion of the results of this research and future work. 

2.� Background and related work 
The need for military forces to adequately plan and train for operations in the cyberspace realm, in support of 
both offensive and defensive objectives, has become well-understood in recent years. According to Sheldon 
(2012), nation-state and terrorist-based cyber threats exist that can do serious harm to national security 
interests, and that proper defense against these threats requires “extensive, even onerous, preparations and 
resources.” Grant (2013) points out that the national strategies of most modern nations identify cyber 
operations, and the ability to perform network defense and exploitation, as critical to their national defense. 
Further, he highlights the need for proper infrastructure and training, among other criteria, to support these 
objectives.  
 
Offensive cyber operations are divided generally into computer network attack (CNA) and computer network 
exploitation (CNE). CNA is focused on denying or degrading the ability of an adversary to use its own operational 
networks and the data stored within, i.e., attacking the network within the cyberspace (as opposed to a physical 
attack against the network infrastructure).  CNA is most often associated with military operations. By contrast, 
CNE involves gaining access into an adversary network for the purposes of exploiting the sensitive or classified 
data stored therein, and is usually associated with cyber espionage (Rattray and Healer, 2010).  
 
Each of the two classes of OCO has its own, often disparate, objectives, however the tools and techniques used 
are similar. For both, a thorough analysis of intended and collateral effects of a cyber action is critical to ensuring 
missions success, as well as to ensuring abidance to the laws of armed conflict in cyberspace. As pointed out by 
Fanelli and Conti (2012), even in cyberspace, the need to exists to limit as much as possible the effects of 
offensive actions to only intended targets. In order to meet these demands of cyber warfare in both CNA and 
CNE, military forces require appropriate network-based tools and technologies to fully develop and test specific 
cyber actions against accurate representations of an adversary network.  
 
Numerous COTS (commercial-off-the-shelf) network penetration testing (pentesting) tools exist that can be used 
to support the development of cyber-attack tools and methods. Popular pentesting software tools and systems 
include the Metasploit Framework (MSF), STEPfwd, SafeBreach, Arena, and Core Impact Pro.   
 
The MSF is a suite of pentesting tools that can be used to develop and deploy custom designed cyber-attack 
modules (i.e., cyber exploits with associated malware payloads) to achieve a desired cyber effect (Kennedy et 
al, 2011). Since MSF tools are primarily designed for testing singular cyber-attacks, the architecture limits the 
nature and flexibility for developing a large variety of attack scenarios.  
 
Core Impact Pro and SafeBreach are network pentesting tools that utilize a proprietary collection of known 
offensive network exploitation techniques via an automated pentesting algorithm that continuously attempts 
to penetrate a target network (Green, 2016). The SafeBreach platform does not offer a way for exploits to be 
tested in a rapidly configurable and benign test environment, and both tools lack the ability to design unique 
attack scenarios 
 
STEPfwd (Simulation, Training and, Exercise Platform) was developed by the Software Engineering Institute at 
Carnegie Mellon University, and enables virtualized training simulations that closely mimic real-world cyber 
infrastructures and attacks. The tool uses Virtual Training Environment (VTE) to facilitate the knowledge and skill 
building phases of training, and Exercise Network (XNET) as a platform for remote instructors to create 
customized, full-scale cyber exercise scenarios to simulate real-world environments (Hammerstein and May, 
2010; Mayes, 2014). STEPfwd can support the development of simulated attack scenarios against virtualized 
adversary networks, however, it lacks the ability to map new networks, and is not designed to be used in an 
operational environment. 
 
The University of Rochester developed a system in 2007 that models computer networks, intrusion detection 
systems (IDS), and the behavior of the network as an alternative way to simulate cyber-attack scenarios (Sudit 
et al, 2007). Their system allows the user to construct a simulated test network and then devise, build, and 
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execute various cyber-attack scenarios against this network via a GUI, however, the tool’s capability is limited 
to relatively simple scenarios.  
 
Another method of cyber-attack modeling uses attack graphs (or trees) to represent every possible sequence of 
actions that can lead to a specific attack goal.  Paudel et al (2017) used this methodology to analyze advanced 
persistent threat (APT) cyber-attack methods against smart-grid wide area monitoring systems (WAMS).  
Kotenko and Chechulin (2013) used attack graphs to evaluate security and provide impact assessments over 
various stages for determining countermeasure in near-real time.  Commercial software products, such as 
Amenaza SecurITree, make use of attack trees for security analysis but lack the capability to rapidly simulate 
offensive attacks against a desired network.  The main disadvantage of attack trees, however, is the 
exponentially increasing computational complexity when modeling large systems with thousands of nodes. 

3.� MAST overview 
The Malicious Activity Simulation Tool (MAST) is designed to mimic malware injection on live networks to 
simulate malware attacks on the same machines and networks that could be attacked in a real malware attack 
(Belli, 2016; Lowney, 2015). While it is designed to support training and testing of non-privileged users and 
administrators, we have used it as the foundational platform to build OCO simulation and testing capability. We 
are able to use MAST in this way because of the following capabilities:  

� Support for execution of scripted scenarios, 

� Scripted scenarios can be transported and transferred (i.e., remotely controllable), 

� MAST malicious behaviors are modular and extensible by scenario authors (i.e., not hard-coded in MAST), 

� Scenario behaviors are dynamic and react to the conditions on the workstation and network. 

At the heart of MAST is SimWare, or simulated malware modules. SimWare is software meant to mimic some 
aspect of a computer attack or intrusion. The definition of what mimic means depends on the simulation and 
whether it is meant to fool software or users into thinking that an unwanted activity is taking place. Such activity 
can include random network traffic, pop-up windows, system messages, virus signatures, etc. This activity may 
be caused by existing system commands and executables, or it may be new executables or scripts loaded from 
the server or as part of MAST installation on a host computer. In MAST, these executables are indexed and 
accessed by a unique module name. 
 
MAST utilizes a three-tiered client-server model that was designed to be able to test an organization’s users, 
administrators, and security tools. The MAST architecture, shown in Figure 1, consists of a top-level Scenario 
Generation Server (SGS), second-tier Scenario Execution Servers (SES), and third-tier MAST client(s). 

3.1� Scenario Generation Server (SGS) 

The SGS is responsible for many of the command level functions of MAST. It is primarily responsible for 
generating and disseminating training scenarios, providing a central repository for all available scenarios, 
controlling connected Scenario Execution Servers, and running independent scenarios on multiple networks 
simultaneously. The SGS installs as a Java desktop application, and can be run from a local or remote location to 
control the second-tier SES(s). 

 
Figure 1: MAST three-tier client server architecture (Lowney, 2015) 
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3.2� Scenario Execution Server (SES) 

The SES receives control commands from the SGS, and communicates directly with the MAST clients. It manages 
execution of attack scenarios on the clients, and is locally installed on the operational or target network for 
training (Lowney, 2015). As the middle manager of MAST, the SES is responsible for a number of intermediate 
tasks that include distributing SimWare and scenario files to MAST clients, maintaining MAST client and SimWare 
status, overseeing all scenario activity on MAST clients, handling “kill switch” functionality in case of emergency 
shutdown, and maintaining a copy of deployed SimWare and scenario files (Diana, 2015). 

3.3� Clients 

The MAST client uses a Java application that runs on each of the client machines on the MAST test network. The 
client application is controlled by the SES, and performs a number of client functions: reports the status of the 
running scenario to the SES, lists all modules that are installed on the host client to the SES, and executes the 
scenario as directed by the SES. 
 
When a MAST Client connects to the SES, the SES immediately spawns an instance of the 
ClientCommunicatorClass for that socket. This is shown in Figure 2. The ClientCommunicatorObject handles all 
communication with the specific MAST Client. Once the MAST Client has finished sending and receiving data, its 
corresponding communicator is destroyed. The MAST Clients do not maintain a persistent connection with the 
SES. Each MAST Client connects to the server at a set interval and disconnects after sending and receiving data. 
The first time a MAST Client connects, a ClientObject is created for that MAST Client. This ClientObject is stored 
in memory until the SE Server is shutdown and stores information about the MAST Client. The ClientObjects are 
identified by a unique ID generated by the MAST Client. 
 
A basic understanding of how the MAST Client works is necessary if a scenario author wants to write complex 
scenarios (see “Scenarios” section below). The MAST Client is responsible for running the malicious behaviors 
and reporting the result of those behaviors back to the SES. The malicious behaviors are contained in Simware 
modules. Modules are self-contained programs that are invoked by the MAST Client when directed by the SES. 
The modules are not compiled into the MAST Client so that the scenario author can write new behaviors without 
needing to change the MAST Client’s code. Modules can be written in any language supported by the operating 
system. We use the ProcessBuilder library to execute external programs while capturing runtime information 
such as console output and return codes. This is the mechanism through which the module is able to send data 
back to the SES. 
 
The module return code is transmitted to the SES in a StatusPacket. There exist two methods by which a module 
can produce a return code. The first method is initiated when a module exits. The return code is packaged in a 
StatusPacket and sent to the SE Server. In the other method, the module writes out a special string to its output. 
This string is “MMReturnCode=<NUM>.” If the MAST Client detects this string in the output it will send a new 
StatusPacket with that return code. Return codes are used to initiate additional events in scenarios; therefore, 
these two methods of sending return codes allows the scenario author to initiate additional events after a 
module ends or while the module is still running. This can be useful for larger modules that execute several 
behaviors. The module author may want to start a new behavior while a previous behavior is running. 
 
Module output is transmitted to the SES inside OutputPackets. The output is not processed by the SE Server and 
is retained for logging purposes. However, the module output is used by the MAST Client to create rollback code 
that will run once the scenario has finished. The MAST Client monitors the output for any line beginning with 
“ROLLBACK=.” Any text after the equals sign is written out to a batch file which is run after the scenario ends. 
Using this method, a module author is able to dynamically create a rollback script that brings the workstation 
back to the state it was in before the scenario ran. 

3.4� SimWare modules 

SimWare modules contain code for mimicking target malware behavior, called “mimics”. As mentioned above, 
SimWare can simulate a range of malevolent behavior, such as scanning, pinging, or hijacking of a host. 
Additionally, a mimic can be identified as a particular type of attack based on its binary signature matching that 
of some known malware (Lowney, 2015). The MAST framework can accept multiple executable file types as 
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SimWare modules, such as compiled Java or C/C++ code, Python scripts, Unix shell scripts, and Windows batch 
files.  

 
Figure 2: Client connection flow diagram 

3.5� Scenarios 

MAST Scenario files define SimWare modules with various options and commands needed to execute them. 
SimWare Modules are controlled by scenarios. A scenario is a set of instructions that direct specific Clients to 
run specific modules in a controlled way. A scenario can be as simple as directing one client to run one module, 
or directing multiple clients to run multiple modules. Scenarios are only run by the Scenario Execution Server, 
and it can only run one scenario at a time. 
 
Scenario files allow the tester to configure different forms of a SimWare module to test different features on 
the target system. The SGS and SES run these scenario files and compile the results, and in some instances, 
respond with the appropriate “reply” in accordance with the scenario parameters. Figure 3 shows this 
relationship between modules and scenarios. 

 
Figure 3: Relationship between scenarios and modules 
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4.� Cyber-attack design 
Designing effective cyber-attacks for an offensive cyber operation is critical to replicating real-world cyber 
operations. Several critical factors and parameters must be considered to properly design and develop the 
processes and approaches used to test simulated cyber-attack scenarios in a virtualized environment. These 
include: 

� Target network configuration 

� Interaction parameters 

� Attack rehearsal essentials 

� Attack types 

4.1� Target network configuration 

Creating a cyber-attack simulation that will lead to a high probability of success against a real-world system 
demands thorough knowledge of the target network. OCO mission success is predicated on knowledge of a 
network’s vulnerabilities in order to exploit them. Detailed knowledge of the network will include enumeration 
of the network (IP addresses, network topology, domain names); hosts (architecture types, OS variant and 
version, services running, ports open); security settings (firewalls, IDS/HBSS running with associated detection 
method, password policy requirements, etc.); and physical security measures (padlocked doors, keycards, 
hardened facility). This knowledge may enable a cyber operator to bypass target defenses and exploit a system 
to achieve some intended cyber effect. Knowledge of network vulnerabilities can be gained through active and 
passive computer scanning, and intelligence gathering through human, signals, and open source means 
(McClure, et al 2012). 

4.2� Interaction parameters 

Creating accurate OCO simulations requires interaction parameters that can define the secondary behaviors of 
the SimWare. These configurable parameters, such as specificity, timing, propagation, skill and stealth, can 
modify the manner in which the SimWare traverses through the target network to accurately mimic real-world 
behaviors, i.e., self-propagation vs aided propagation. The interaction parameters are designed to function 
complimentary, such as skill and stealth, or to be combined to form a new hybrid behavior that affects the 
SimWare differently than either would independently. For example, a piece of malware that is constructed by a 
nation-state adversary could be very stealthy, and extremely specific about its target and attack timing; whereas, 
a lessor adversaries’ malware might have very low specificity, timing, and stealth. In this research effort, the 
ability to identify a target by either IP address or MAC address and specify the timing of that attack were the 
interaction parameters that were implemented.  

4.3� Attack rehearsal essentials 

Creating a virtual network environment that can be used effectively to rehearse a cyber-attack will require a 
number of essential elements. These include the ability to reset and reconfigure the environment rapidly, and 
also to provide a wide selection of configurable SimWare options to achieve various cyber effects. In addition, 
the environment must support configurable timelines for activities and their execution, and it must be able to 
incorporate specific vulnerabilities for a target network or system. Finally, an effective environment must have 
the ability for automated testing of a previously configured simulation. 

4.4� Attack types 

Cyber-attacks are often classified according to their objectives, for example, an attack may target data 
confidentiality (illicit access), integrity (data manipulation), or availability (denial of service). These categories 
provide a useful breakdown for the development of the different types of SimWare modules we focused on in 
developing the framework. 

5.� Implementation 
Our test environment was composed of a virtualized network infrastructure, using a Type 1 hypervisor, the 
virtualized target hosts, and the software tools used for execution of the cyber-attack scenarios. VMware was 
used as the hypervisor and to deploy the target hosts, which provided a high degree of configurability and virtual 
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resources, a key requirement for accurate modeling of the adversary network. The target hosts were configured 
on a private network that was created and configured within a test network to allow communication between 
hosts on their subnet. Each host required its own instance of the MAST client to be run locally.  
 
The network architecture was kept flat to allow better examination of the behaviors of the attack modules, and 
to avoid additional complexity that could have affected the testing results. The test setup within the VMware 
environment is shown in Figure 4. The VM hosts are listed on the left-side, within the red box, while the MAST 
network configuration and running clients are shown on the right-side of Figure 4. The center window allows 
selection of a cyber-attack scenario from a predefined list. The three new scenarios created in this research are 
indicated in red, and include: “Attack When Idle,” “Logic Bomb,” and “Targeted Virus Attack.” The scenarios 
utilized SimWare modules that were developed to implement the interaction parameters of target specificity 
and timing. 

 
Figure 4: Virtualized test network in MAST 

5.1� Scenario file 

The MAST scenario file consists of key-value pairs that define an attack scenario. The file provides the framework 
with instructions for how to execute specific SimWare module(s) for the scenario, and how to perform 
subsequent actions based on return conditions. Each section of the scenario file is delineated by the section 
keyword surrounded by square brackets. The SES reads-in the scenario file sequentially and parses the 
commands in the file to direct the execution of commands to the appropriate MAST clients. Each MAST client 
runs as an application process on the host VMs and maintains an active communication channel to the middle 
tier execution server to provides status updates and receives command direction. 
 
Figure 5 shows an example scenario file for an “Attack When Idle” scenario. It highlights the modularity of the 
MAST design by incorporating a range behaviors and modalities in the scenario file. Each individually designed 
module, whether written in Java or C, or a Unix script file, can be utilized by the MAST framework. The additional 
arguments needed for either the scenario configuration or executable module are catalogued in the various list 
sections (ModuleList, GroupList, CommandList) of the scenario file. 

5.2� Idle user attack module 

In an offensive cyber-attack, the timing of an attack can be just as important as the affect it achieves. In many 
cases, an attack should be launched during an idle period of activity on the target host, under the assumption 
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that no user is interacting with the computer and thus the attack will be less likely to be detected. With this in 
mind, the ability to support temporal specificity of an attack is important in the development of realistic cyber 
scenarios. For this module, we implemented the ability to launch a cyber-attack only after no user has interacted 
with the target machine for a specified period, to further hide the attacker’s activity.  
 
This scenario file contains all the necessary information for MAST to execute an attack scenario. The file is 
processed as a series of linear actions as shown in the “Events” section. In Figure 5, events 2-4 perform similarly 
to an ‘if-then-else’ programming structure where the determination of what gets executed is based on the 
received return code. 

 
Figure 5: “Attack When Idle” example scenario file 

In Figure 5, the [CommandList] input parameter in the module represents the minimum number of seconds in 
the timeout period. For example, if the scenario developer required two hours of user inactivity before executing 
a SimWare event, he would pass argument ‘7200’ to this input parameter. 
 
To determine user inactivity, the “AttackWhenIdle” module detects user inputs (mouse movements and clicks, 
or keyboard entries), and tracks the amount of time since the target system last received any of these; this 
represents system idle time. If the idle time is greater than a user passed timeout value, the module exits a 
successful return code to the SES. If a user input event is detected before the specified timeout is reached, the 
timer is reset and the idle period begins anew. The following pseudocode represents this system idle logic: 
 
 while ( idleTime < timeToWait ) { 
  sleepTime = (timeToWait – idleTime) + 1 
  sleep( sleepTime );  
  idleTime = getIdleTimeOS_SystemCall() 
  if (idleTime >= timeToWait) { 
   return success_code 
  } 
 } 
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5.3� Timing specific attack module 

The second module implemented replicates the ability to launch a SimWare module that will activate when a 
specific set of conditions occur, or after at a predesignated time period, known commonly as a “logic bomb.” 
The module provides the ability to manipulate the temporal targeting aspect of the scenario, albeit differently 
than was done in the “AttackWhenIdle” module. The logic for this module used a loop construct to periodically 
check the current system date against the passed date-time to execute. If the execute date-time is after the 
current date-time, a differential time is calculated and is used as the parameter to initiate a sleep function. For 
efficiency, the module does not proceed until the current date-time falls after the execute date-time, as there 
is nothing gained by checking more frequently. When the execute date-time falls before the current date-time, 
the module will return a successful exit code. Whenever the passed argument for the date-time is before the 
current date-time, the module will immediately return a successful exit code, simulating a logic bomb that would 
execute immediately once its criteria has been met.  

5.4� Target specific attack host module  

The final attack module enabled target specificity on the network or link layer. The ability to target an adversary 
host or subnet by IP address or MAC address is vital for developing offensive scenarios against a large, dispersed 
network. This module accepts one or more IP addresses, MAC addresses, or computer host names as input 
parameters. For example, a scenario might have several hosts, with the goal to have the SimWare launch only 
on the hosts that match the IP addresses passed as arguments.  
 
Since a separate instance of the “TargetSpecificHost” module will run on each host, there can only be one 
matching IP address, even if two IP addresses were passed to the module. The module logic proceeds linearly, 
and loops through the input parameters to compare each with the host’s IP address. Java library functions are 
able to return the IP address for each host and for all its network interfaces (Ethernet, Wi-Fi, virtual). For this 
module, the input for the [CommandList] of the scenario file in Figure 5 would be similar to the following: 
 
 [CommandList] 
 1=TargetSpecificHost 10.1.99.11  192.168.74.1 
    or 
 1=TargetSpecificHost 00-50-56-9C-4A-EF 
 
The ability to target hosts on a particular subnet, or hosts behind a Network Address Translation (NAT) server, 
by being able to discern a specific MAC address is vitally important. This module was able to achieve that 
behavior by being able to discern different hosts via their MAC address and determine if the target criteria was 
met based on the passed arguments in the [CommandList] of the scenario file.  

6.� Conclusions and future work 
Our framework enabled us to develop, simulate and test a number of different cyber-attacks on a variety of 
network configurations. Although this research was able to achieve a number of important milestones toward 
the creation of an offensive cyber scenario development platform, it is only the first step in this process. Future 
research will focus on two areas for extending the framework: further development of attack scenario target 
parameters, and enhancement of the MAST framework to support more robust scenario development. 
 
We will extend the MAST framework to make it a more robust cyber-attack development platform, to include a 
menu of available SimWare modules that can be selected from a GUI-style menu and auto-loaded into a cyber 
scenario file shell. Other improvements will add support for common programming constructs to the scenario 
file, enabling the developer to essentially program or script a cyber-attack scenario. MAST currently allows linear 
processing of an attack scenario file, with no looping constructs, complex conditionals, or variable assignments 
within the current framework. These advanced programming features are common in modern scripting 
languages such as Java Script, Bash shell, and others. Extending the framework to allow advanced scripting 
constructs will allow the creation of much more complex scenarios. We feel these extensions will greatly 
increase the effectiveness of MAST as an offensive cyber-attack scenario development and testing platform. 
 
Attack parameters such as skill, efficiency and stealth would add greater realism and nuanced behavior to the 
developed scenarios. These could be developed and integrated within the MAST framework, and made 
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selectable via user menus. In this way, the parameters could be applied to any of the scenarios developed within 
the framework. These improvements, if implemented, would greatly increase the effectiveness of MAST as an 
offensive cyber-attack scenario development platform. 

References 
Belli, G. (2016) “Extensible simware architecture for flexible training scenarios”, MSCS thesis, Naval Postgraduate School, 

Monterey, CA. 
Diana, B. (2015) "Malicious activity simulation tool (MAST) and trust," MSCS thesis, Naval Postgraduate School, Monterey, 

CA. 
Fanelli, R. and Conti, G. (2012) "A methodology for cyber operations targeting and control of collateral damage in the 

context of lawful armed conflict", Proceedings of IEEE 4th international conference on cyber conflict (CYCON). 
Gellman, B. and Nakashima, E. (2013) “U.S. spy agencies mounted 231 offensive cyber-operations in 2011, documents 

show”, The Washington Post, http://wapo.st/17sEENT?tid=ss_mail&utm_term=.1e048333 c62f. 
Grant, T. (2013) "Tools and Technologies for Professional Offensive Cyber Operations", International Journal of Cyber 

Warfare and Terrorism (IJCWT), Vol. 3 No. 3, pp 49-71. 
Hammerstein, J. and May, C. (2010) “The CERT approach to cybersecurity workforce development”, Carnegie Mellon Univ. 

Software Engineering Institute, Pittsburgh, PA, Tech. Rep. CMU/SEI-2010-TR-45. 
Kennedy, D., O'Gorman, J., Kearns, D., and Aharoni, M. (2011) Metasploit: The Penetration Tester's Guide, San Francisco: 

No Starch Press. 
Kotenko, I., and Chechulin, A. (2013) “A cyber attack modeling and impact assessment framework”, Cyber Conflict (CyCon 

2013), 5th International Conference on Cyber Conflict, pp 1-24, IEEE. 
Lowney, E. (2015) "Network communications protocol for the malicious activity simulation tool (MAST)," MSCS thesis, 

Naval Postgraduate School, Monterey, CA. 
Mayes, J. (2014) “Modeling large-scale networks using virtual machines and physical appliances”, Carnegie Mellon Univ. 

Software Eng. Inst., Pittsburgh, PA, Tech. Rep. DM-0000921. 
McClure, S., Scambray, J. and Kurtz, G. (2012) Hacking Exposed 7, Network Security Secrets and Solutions. New York: 

McGraw Hill, 2012.  
Paudel, S., Smith, P., and Zseby, T. (2017) "Attack models for advanced persistent threats in smart grid wide area 

monitoring", Proceedings of the 2nd Workshop on Cyber-Physical Security and Resilience in Smart Grids.  
Rattray, G. and Healey, J. (2010) "Categorizing and understanding offensive cyber capabilities and their use", Proceedings 

of a Workshop on Deterring Cyber Attacks: Informing Strategies and Developing Options for US Policy. 
Sheldon, J. (2012) "State of the art: Attackers and targets in cyberspace", Journal of Military and Strategic Studies, Vol. 14, 

No.2. 
Sudit, M., Kistner, M., Kistner, J. and Costantini, K. (2007) “Cyber attack modeling and simulation for network security 

analysis”, IEEE Winter Simulation Conference, Washington DC. 

10


