
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{S}\mathrm{C}\mathrm{I}. \mathrm{C}\mathrm{O}\mathrm{M}\mathrm{P}\mathrm{U}\mathrm{T}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 46, \mathrm{N}\mathrm{o}. 2, \mathrm{p}\mathrm{p}. \mathrm{S}324--\mathrm{S}351

A PARALLEL ALGORITHM FOR COMPUTING PARTIAL
SPECTRAL FACTORIZATIONS OF MATRIX PENCILS VIA

CHEBYSHEV APPROXIMATION\ast

TIANSHI XU\dagger , ANTHONY AUSTIN\ddagger , VASILEIOS KALANTZIS\S , AND YOUSEF SAAD\dagger

Abstract. We propose a distributed-memory parallel algorithm for computing some of the
algebraically smallest eigenvalues (and corresponding eigenvectors) of a large, sparse, real symmetric
positive definite matrix pencil that lie within a target interval. The algorithm is based on Chebyshev
interpolation of the eigenvalues of the Schur complement (over the interface variables) of a domain
decomposition reordering of the pencil and accordingly exposes two dimensions of parallelism: one
derived from the reordering and one from the independence of the interpolation nodes. The new
method demonstrates excellent parallel scalability, comparing favorably with PARPACK, and does not
require factorization of the mass matrix, which significantly reduces memory consumption, especially
for 3D problems. Our implementation is publicly available on GitHub.

Key words. symmetric generalized eigenvalue problem, spectral Schur complements, Chebyshev
approximation, parallel computing

MSC codes. 15A18, 65D15, 65F15, 65N55, 65Y05, 68W10

DOI. 10.1137/22M1501155

1. Introduction. Several applications in science and engineering require the
computation of a handful of the algebraically smallest eigenvalues and associated
eigenvectors of a large, sparse matrix pencil (A,M), where the n\times n matrices A and
M are real symmetric and M is positive-definite. Often, one is provided bounds \alpha
and \beta on the eigenvalues of interest, and the goal is then to compute all nev eigenpairs
of (A,M) that lie within [\alpha ,\beta]. That is, one seeks nontrivial solutions to

Ax= \lambda Mx, \lambda \in [\alpha ,\beta].

Problems of this sort arise, for instance, in spectral clustering [41] and low-frequency
response analysis [6, 15].

Due to the size of modern matrix problems, parallel computing has become an
integral part of software libraries targeting large-scale eigenvalue computations. In
many packages (e.g., PARPACK [30, 34], PRIMME [37], BLOPEX [28]), linear algebra
kernels are the main source of parallelism, with operations such as matrix-vector
and dot products performed in parallel by distributing the data across multiple

\ast Received by the editors June 7, 2022; accepted for publication (in revised form) February 7,
2023; published electronically September 20, 2023.

https://doi.org/10.1137/22M1501155
Funding: The work of the first and fourth authors was supported by National Science Foun-

dation (NSF) grant DMS-1912048. The work of the second author was supported by the Research
Initiation Program at the Naval Postgraduate School. The work of the third author was supported
by the Mathematical Sciences Council of IBM Research through its Exploratory Science initiative.

\dagger Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN
55455 USA (xuxx1180@umn.edu, saad@umn.edu).

\ddagger Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93940 USA
(anthony.austin@nps.edu).

\S IBM Research, Thomas J Watson Research Center, Yorktown Heights, NY 10598 USA
(vkal@ibm.com).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S324

https://doi.org/10.1137/22M1501155
mailto:xuxx1180@umn.edu
mailto:saad@umn.edu
mailto:anthony.austin@nps.edu
mailto:vkal@ibm.com

PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION S325

processors. Several recent packages improve scalability by exploiting additional levels
of parallelism via techniques such as spectrum slicing (pEVSL [31]), rational filtering
(FEAST/PFEAST [20, 27, 35] and z-Pares [36]), and parallel shift-and-invert meth-
ods [42, 46]. The SLEPc collection of distributed-memory eigenvalue algorithms [14]
contains implementations of several of these methods.

Another class of distributed-memory eigenvalue solvers is based on algebraic do-
main decomposition, also known as algebraic substructuring. In domain decomposi-
tion, the adjacency graph associated with the pencil (A,M) is partitioned into several
nonoverlapping subgraphs. The eigenvalue problem then decouples into two separate
tasks: first, one determines the eigenvector components associated with the interface
variables of the partitioned graph; then, one finds the components associated with
the interior variables. The second task parallelizes naturally over the subgraphs. For
more information, see [6, 12, 17, 29, 45] and the references therein.

1.1. A new parallel algorithm. In this article, we combine the domain
decomposition approach with Chebyshev function approximation to design a new
distributed-memory parallel eigensolver. The contributions of our work are the
following:

1. The algorithm parameterizes the eigenvector components associated with the
interior and interface variables as univariate, analytic, vector-valued func-
tions. It then uses the fact that Chebyshev interpolation of these functions
yields good approximations to the eigenvectors to construct a subspace for
use with a Rayleigh--Ritz projection scheme. We present theoretical and prac-
tical details when the interpolation points are Chebyshev nodes of the second
kind.

2. The proposed algorithm leverages multidimensional parallelism by assigning
computations associated with different Chebyshev nodes to different proces-
sor groups and assigning computations associated with different subdomains
to different processors within each group. Our numerical experiments demon-
strate that the algorithm achieves higher parallel efficiency than PARPACK on
distributed-memory systems communicating via the Message Passing Inter-
face (MPI) [13]. A C++/MPI implementation of the proposed algorithm is
available publicly at https://github.com/Hitenze/Schurcheb.

3. In contrast to previous work on domain decomposition eigensolvers, the
proposed algorithm requires the computation of neither derivatives of eigen-
vectors [18] nor a large number of eigenvectors of linearized spectral Schur
complements [5, 6]. Moreover, unlike branch-hopping domain decomposition
algorithms, which compute eigenvalues one at a time [19, 21], the proposed
algorithm introduces model parallelism in addition to data parallelism by
approximating all sought eigenvalues simultaneously via Rayleigh--Ritz pro-
jection. Unlike approaches based on the Lanczos algorithm, the proposed
algorithm does not require a distributed-memory factorization of A or M ;
therefore, it is not limited by the efficiency of distributed-memory triangular
solves. Finally, in contrast to most rational filtering techniques, especially
those based on discretizations of complex contour integrals [22, 23], the pro-
posed algorithm does not evaluate functions at complex values and therefore
does not require complex arithmetic.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

https://github.com/Hitenze/Schurcheb

S326 T. XU, A. AUSTIN, V. KALANTZIS, AND Y. SAAD

1.2. Notation and roadmap. Throughout the paper, we denote the set of
eigenvalues of a general pencil (K,F) by \Lambda (K,F) and the eigenpairs of the spe-
cific pencil (A,M) by

\bigl(
\lambda i, x

(i)
\bigr)
, i = 1, . . . , n, ordered algebraically: \lambda 1 \leq \cdot \cdot \cdot \leq \lambda n.

Given bounds \alpha and \beta such that \alpha < \lambda 1, our aim is to compute all nev eigenpairs
of (A,M) that lie in [\alpha ,\beta], i.e., the nev algebraically smallest eigenvalues of A and
their corresponding eigenvectors. Finally, we denote by Ran(K) and Ker(K) the
range and kernel of a matrix K and by span\{ v1, . . . , vk\} the linear span of vectors
v1, . . . , vk.

This paper is organized as follows. Section 2 presents background on algebraic
graph partitioning and domain decomposition. Section 3 shows how the eigenvectors
of (A,M) can be identified as values of certain univariate, vector-valued functions
and discusses how they can be approximated by Rayleigh--Ritz projection onto a
subspace formed via Chebyshev approximation. Section 4 discusses the distributed-
memory implementation of the proposed algorithm on 2D grids of MPI processes. Sec-
tion 5 showcases the performance of the proposed algorithm using numerical experi-
ments performed in both sequential and distributed-memory computing environments.
Finally, section 6 presents our concluding remarks.

2. Domain decomposition variable ordering. Let \scrG = (\scrV ,\scrI) be a simple
undirected graph with vertex set \scrV and edge set \scrI . A p-way edge separator is a
subset \scrI s \subseteq \scrI whose removal from \scrI divides the vertices of the graph \scrG into p \in \BbbN
nonoverlapping sets \scrV 1, . . . ,\scrV p such that the induced subgraphs \scrG 1 = (\scrV 1,\scrI 1), . . . ,\scrG p =
(\scrV p,\scrI p) are disjoint. We refer to the induced subgraphs variously as subdomains,
substructures, or partitions. A vertex is called an interface vertex if it is incident to
an edge in \scrI s and an interior vertex otherwise.

Applied to graphs derived from matrices, edge separators are commonly used
in parallel computing to achieve load balancing during the execution of distributed-
memory linear algebra kernels. In this context, the induced subgraphs ideally have
similar numbers of vertices and edges, while the size (cardinality) of the separator
set is kept to a minimum. Finding the ``best"" edge separator is an NP-hard prob-
lem. In practice, one relies on heuristics, such as the algebraic partitioning strategies
implemented in the popular METIS and ParMETIS packages [24, 25].

To a symmetric matrix pencil (A,M) of dimension n, we associate a graph \scrG A,M

in the usual way, taking \scrV = \{ 1, . . . , n\} for the vertex set and \scrI = \{ (i, j) | Ai,j \not =
0 or Mi,j \not = 0\} for the edge set. Thinking of the eigenvalue equation Ax = \lambda Mx as
a set of n linear equations in the components of x (one for each row of the system),
the vertices correspond to the n unknown variables in the vector x, and the graph
\scrG A,M has an edge connecting vertices i and j if the variable xj appears in the ith
equation. A p-way edge separator for \scrG A,M groups the variables into p disjoint sets
or subdomains. Interface vertices correspond to variables that are coupled (via equa-
tions) with variables from multiple subdomains, while interior vertices correspond
to variables that are coupled only with other variables from the same subdomain.
Figure 2.1 illustrates this for a 4-way partitioning of a graph that models a 6 \times 6
regular grid.

Having partitioned \scrG A,M , we reorder the variables, listing all interior variables
first, grouped in order by subdomain, followed by the interface variables, also grouped
by subdomain. Let P be the permutation matrix that effects this reordering. Under
P , the matrices A and M are reordered into a pair of structured block
matrices:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION S327

\scrG 1

\scrI s

\scrG 3

\scrG 2

\scrG 4

Fig. 2.1. A 4-way partitioning of a 6\times 6 discretized domain obtained from an edge separator.
The four colors distinguish the four different subdomains. Solid-colored nodes correspond to interior
variables. Nodes with a gray background correspond to interface variables. Solid lines correspond to
edges between vertices of the same partition. Dashed lines correspond to edges between vertices of
neighboring partitions.

PTAP =

\left[

B1 E1

B2 E2

. . .
. . .

Bp Ep

ET
1 C1,1 C1,2 \cdot \cdot \cdot C1,p

ET
2 C2,1 C2,2 \cdot \cdot \cdot C2,p

. . .
...

...
. . .

...
ET

p Cp,1 Cp,2 \cdot \cdot \cdot Cp,p

\right]

PTMP =

\left[

MB1
ME1

MB2 ME2

. . .
. . .

MBp
MEp

MT
E1

MC1,1
MC1,2

\cdot \cdot \cdot MC1,p

MT
E2

MC2,1
MC2,2

\cdot \cdot \cdot MC2,p

. . .
...

...
. . .

...
MT

Ep
MCp,1

MCp,2
\cdot \cdot \cdot MCp,p

\right]
.

(2.1)

To provide more detail, let di and si denote, respectively, the numbers of interior
and interface variables belonging to the ith domain. The matrices Bi and MBi

are of
size di \times di and represent the coupling between the interior variables within the ith
subdomain. The matrices Ei and MEi

are of size di \times si and represent the coupling
between the interior and interface variables of the ith subdomain. Finally, the matrices
Ci,j and MCi,j are of size si \times sj and represent the coupling between the interface
variables of the ith subdomain and those of the jth subdomain. If the ith and jth

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S328 T. XU, A. AUSTIN, V. KALANTZIS, AND Y. SAAD

subdomains do not neighbor one another, Ci,j = MCi,j = 0. Since A and M are
symmetric, Cj,i =CT

i,j and MCj,i =MT
Ci,j

.
Our algorithm makes essential use of the structure of this reordering of A and M .

For the remainder of the paper, we assume that A and M have been so reordered and
suppress mention of the permutation P . We write A and M in 2\times 2 block form as

A=

\biggl[
B E
ET C

\biggr]
, M =

\biggl[
MB ME

MT
E MC

\biggr]
,(2.2)

with the blocks being defined in the obvious way to conform to the structure just
described. Finally, we define d= d1+ \cdot \cdot \cdot + dp and s= s1+ \cdot \cdot \cdot + sp, the total numbers
of interior and interface variables, respectively. Thus, the matrices B and MB are
d\times d, E and ME are d\times s, and C and MC are s\times s. Of course, d+ s= n.

3. A parallel algorithm based on Chebyshev approximation. Our algo-
rithm is based on the fact that the eigenvalues and eigenvectors of the matrix A - \zeta M
are analytic functions of \zeta \in \BbbC (vector-valued in the case of the latter). By definition,
if \zeta = \lambda i is an eigenvalue of the pencil (A,M), then A - \zeta M is singular, and its null
vectors are the eigenvectors for (A,M) corresponding to \lambda i. By continuity, if \zeta is close
(but not equal) to \lambda i, then A - \zeta M will be ``nearly singular"" in the sense that it will
have one or more eigenvalues that are small in magnitude, and the eigenvectors of
A - \zeta M corresponding to these eigenvalues will be good approximations to null vectors
of A - \lambda iM . On this basis, our algorithm approximates the eigenvectors corresponding
to the smallest eigenvalues of A - \zeta iM at several points \zeta i within the search interval
[\alpha ,\beta] using a Schur complement technique. By choosing the \zeta i well, we can guarantee
that the subspace spanned by these ``near-null"" vectors contains good approximations
to the eigenvectors of (A,M). The algorithm extracts such approximations from this
subspace via Rayleigh--Ritz projection.

3.1. Spectral Schur complements. To make this process efficient and paral-
lelizable, we exploit the block structure of A and M induced by the variable reordering
discussed in the previous section. Partition the eigenvector x(i) associated with the
eigenvalue \lambda i of (A,M) as

x(i) =

\biggl[
u(i)

y(i)

\biggr]
,

where u(i) \in \BbbR d and y(i) \in \BbbR s, conforming to the partitioning of A and M in (2.2),
and define

B(\zeta) =B - \zeta MB , E(\zeta) =E - \zeta ME , C(\zeta) =C - \zeta MC(3.1)

for \zeta \in \BbbC . In this notation, the eigenvector equation (A - \lambda iM)x(i) = 0 becomes\biggl[
B(\lambda i) E(\lambda i)
ET (\lambda i) C(\lambda i)

\biggr] \biggl[
u(i)

y(i)

\biggr]
= 0.(3.2)

Under the mild assumption that B(\lambda i) is invertible, i.e., that \lambda i /\in \Lambda (B,MB), we can
eliminate the ET (\lambda i) block in the second row, yielding\bigl[

C(\lambda i) - ET (\lambda i)B(\lambda i)
 - 1E(\lambda i)

\bigr]
y(i) = 0.(3.3)

That is, the s\times 1 bottom part y(i) of the eigenvector x(i) is a null vector of the Schur
complement C(\lambda i) - ET (\lambda i)B(\lambda i)

 - 1E(\lambda i). Having found y(i), one can recover the
corresponding top part u(i) via

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION S329

u(i) = - B(\lambda i)
 - 1E(\lambda i)y

(i),(3.4)

which requires the solution of a d\times d block diagonal linear system.
What if \lambda i \in \Lambda (B,MB)? This case would seldom occur in practice, but we can

come to understand it by writing u(i) = u
(i)
P + u

(i)
N , where u

(i)
P \in Ran

\bigl(
B(\lambda i)

\bigr)
and

u
(i)
N \in Ker

\bigl(
B(\lambda i)

\bigr)
. In place of (3.4), the first block equation in (3.2) yields

u
(i)
P = - B(\lambda i)

+E(\lambda i)y
(i),(3.5)

where B+(\lambda i) is the (Moore--Penrose) pseudoinverse of B(\lambda i). From this and the
second block equation in (3.2), we obtain

E(\lambda i)
Tu

(i)
N +

\bigl[
C(\lambda i) - ET (\lambda i)B(\lambda i)

+E(\lambda i)
\bigr]
y(i) = 0(3.6)

instead of (3.3).
If it happens that Ran

\bigl(
E(\lambda i)

\bigr)
\bot Ker

\bigl(
B(\lambda i)

\bigr)
, so that the first term in (3.6)

vanishes, then the eigenvectors can be found in a manner analogous to the case
when \lambda i /\in \Lambda (B,MB) but with B(\lambda i)

 - 1 replaced by B(\lambda i)
+. Specifically, one can

take y(i) from among the null vectors of the Schur-complement-like matrix C(\lambda i) -
ET (\lambda i)B(\lambda i)

+E(\lambda i) and then recover u
(i)
P from (3.5). The component u

(i)
N can be

taken arbitrarily from Ker
\bigl(
B(\lambda i)

\bigr)
(i.e., from among the eigenvectors of (B,MB)

corresponding to the eigenvalue \lambda i). We thus obtain an eigenspace of dimension

dimKer
\bigl(
C(\lambda i) - ET (\lambda i)B(\lambda i)

+E(\lambda i)
\bigr)
+ dimKer

\bigl(
B(\lambda i)

\bigr)
. More generally, given u

(i)
N ,

one can solve (3.6) for y(i) and then leverage (3.5) to find u
(i)
P . Unfortunately, an

easy way to compute u
(i)
N does not appear to exist, and even if one did, forming and

factoring C(\lambda i) - ET (\lambda i)B(\lambda i)
+E(\lambda i) would still be prohibitively expensive.

It is better simply to avoid the case \lambda i \in \Lambda (B,MB) to begin with. This can
be done by adjusting the partitioning until no eigenvalues of (B,MB) lie within the
search interval [\alpha ,\beta]. As the likelihood of this being necessary is already small---in
particular, we did not need to do this in any of the numerical experiments reported
below---we will not attempt to develop a comprehensive strategy here, leaving this as
a potential matter for future work.

3.2. Chebyshev approximation of eigenvector components. We have thus
reduced the problem to that of finding those values \zeta in [\alpha ,\beta] for which the parame-
terized spectral Schur complement [5, 19],

S(\zeta) =C(\zeta) - ET (\zeta)B(\zeta) - 1E(\zeta),(3.7)

is singular, assuming that no eigenvalue of (A,M) within [\alpha ,\beta] is also an eigenvalue
of (B,MB). For \zeta /\in \Lambda (B,MB), let \mu 1(\zeta), . . . , \mu s(\zeta) and y1(\zeta), . . . , ys(\zeta) denote the
eigenvalues and corresponding eigenvectors of S(\zeta), respectively:

S(\zeta)yi(\zeta) = \mu i(\zeta)yi(\zeta), i= 1, . . . , s.

The \mu i and yi can be defined such that they are analytic functions of \zeta \in \BbbC away from
\Lambda (B,MB). At each point of \Lambda (B,MB), they have at most a pole singularity [21, 26,
33, 39]. We refer to the \mu i as the eigencurves of S. We also define

ui(\zeta) = - B(\zeta) - 1E(\zeta)yi(\zeta), i= 1, . . . , s,

which is also analytic in \zeta away from \Lambda (B,MB).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S330 T. XU, A. AUSTIN, V. KALANTZIS, AND Y. SAAD

The matrix S(\zeta) is singular precisely when one of its eigenvalues is zero: \mu i(\zeta) = 0
for some i. The following result asserts that each of the nev \leq s eigenvalues of (A,M)
in [\alpha ,\beta], counted according to multiplicity, occurs as a zero of one and only one \mu i.

1

Moreover, the top and bottom parts of the corresponding eigenvectors are given by
the values of ui and yi at that zero. The assumption that \beta <min

\bigl(
\Lambda (B,MB)

\bigr)
ensures

that [\alpha ,\beta] is free of any poles of S and that the eigencurves are strictly decreasing
[21]. The assumption that nev \leq s ensures that the dimension of the space in which
we plan to search is large enough to contain all the eigenvectors we seek.

Proposition 3.1. Assume that \beta < min
\bigl(
\Lambda (B,MB)

\bigr)
and that nev \leq s. Then,

there exist nev distinct integers \kappa 1, . . . , \kappa n\mathrm{e}\mathrm{v}
\in \{ 1,2, . . . , s\} such that

\mu \kappa i(\lambda i) = 0, y(i) = y\kappa i(\lambda i), u(i) = u\kappa i(\lambda i).(3.8)

Proof. First, consider the case in which the \lambda i are all simple eigenvalues. Fol-
lowing (3.3), we have S(\lambda i)y

(i) = 0 for some y(i) \not = 0. The matrix S(\lambda i) is singular
and has exactly one zero eigenvalue, denoted by \mu \kappa i

(\lambda i), for some 1 \leq \kappa i \leq s. The
expressions in (3.8) follow directly. It remains to show that \kappa i \not = \kappa j when i \not = j.

By (3.7), the function S---and, by extension, each eigencurve \mu \kappa i
---has a singular-

ity (a pole) at each eigenvalue of (B,MB) and nowhere else. Since \beta <min
\bigl(
\Lambda (B,MB)

\bigr)
,

it follows that the \mu \kappa i are free of singularities on [\alpha ,\beta]. Differentiating the Rayleigh
quotient \mu \kappa i

(\zeta) = yT\kappa i
(\zeta)S(\zeta)y\kappa i

(\zeta)/\| y\kappa i
(\zeta)\| 2, we find that \mu \prime

\kappa i
(\zeta) < 0 on [\alpha ,\beta] [21,

Proposition 3.1]. Hence, the \mu \kappa i
are strictly decreasing on [\alpha ,\beta], which implies that

\lambda i is the only root of \mu \kappa i
in [\alpha ,\beta].

That the result also holds in the case where one or more of the \lambda i have nonunit
multiplicity can be seen by considering arbitrarily small perturbations of (A,M) that
have all simple eigenvalues and appealing to continuity.

We lose no generality in assuming that \kappa i = i, and we will do so throughout the
rest of the paper: from this point forward, \mu i will denote the eigencurve of S that
crosses the real axis at \lambda i.

Proposition 3.1 tells us that the components u(i) and y(i) of a sought eigenvector
x(i) are equal to yi(\lambda i) and ui(\lambda i), respectively. Since both yi(\zeta) and ui(\zeta) are analytic
on [\alpha ,\beta], they can be approximated accurately by interpolation at Chebyshev nodes.
Specifically, for an integer N \geq 1, let

\chi j =
\alpha + \beta

2
+ cos

\biggl(
j\pi

N - 1

\biggr)
\beta - \alpha

2
, j = 0, . . . ,N - 1,(3.9)

be the N Chebyshev nodes of the second kind in [\alpha ,\beta],2 and let \ell j denote the jth
Lagrange basis function for polynomial interpolation in these nodes. That is, \ell j is
the unique polynomial of degree N - 1 such that \ell j(\chi k) is 1 if k = j and 0 if k \not = j.
Finally, let \scrE \rho be the Bernstein ellipse centered on [\alpha ,\beta] with parameter \rho ; that is,
\scrE \rho is the open subset of \BbbC bounded by the ellipse with foci at \alpha and \beta and the sum
of the lengths of its semimajor and semiminor axes equal to \rho . Since yi(\zeta) and ui(\zeta)
are analytic on [\alpha ,\beta], they can be analytically continued to \scrE \rho for some \rho > 0. We
have the following proposition.

1For eigenvalues of nonunit multiplicity, this statement is to be interpreted as saying that there
is a distinct \mu i associated with each copy of the eigenvalue.

2 For N = 1, we take \chi 0 = (\alpha + \beta)/2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION S331

Proposition 3.2. Assume that \beta < min
\bigl(
\Lambda (B,MB)

\bigr)
, that nev \leq s, and that ui

and yi are analytic in \scrE \rho for all i= 1, . . . , nev and some \rho > 0. For each i, there exists
w(i) \in \BbbR N such that

x(i) =

\biggl[
u(i)

y(i)

\biggr]
=

\biggl[
ui(\chi 0) \cdot \cdot \cdot ui(\chi N - 1)
yi(\chi 0) \cdot \cdot \cdot yi(\chi N - 1)

\biggr]
w(i) +O(\rho - N).

Proof. Let w
(i)
j = \ell j(\lambda i) for j = 0, . . . ,N - 1. Then, the top d (respectively,

bottom s) components of the matrix-vector product give the value at \lambda i of the poly-
nomial interpolant to u(i) (respectively, y(i)) in the Chebyshev nodes \chi j . The result
now follows from a standard theorem on the convergence of Chebyshev interpolants
to analytic functions [40, Theorem 8.2].

Instead of interpolating ui and yi directly, we use their samples at the Chebyshev
nodes to generate a subspace in which to look for approximations to the x(i). This
approach eliminates the need to keep track of the association between the samples and
the eigencurves, which may be difficult if the eigencurves cross.3 Proposition 3.2 en-
sures that this subspace contains good approximations to the x(i) for large enough N .
We can express this fact as a statement about the angle between this subspace and
the sought eigenspace.

Corollary 3.3. Let \scrX = span\{ x(1), . . . , x(n\mathrm{e}\mathrm{v})\} , and let

\scrR = span

\biggl\{ \biggl[
u1(\chi 0)
y1(\chi 0)

\biggr]
, . . . ,

\biggl[
u1(\chi N - 1)
y1(\chi N - 1)

\biggr]
, . . . ,

\biggl[
un\mathrm{e}\mathrm{v}

(\chi 0)
yn\mathrm{e}\mathrm{v}(\chi 0)

\biggr]
, . . . ,

\biggl[
un\mathrm{e}\mathrm{v}

(\chi N - 1)
yn\mathrm{e}\mathrm{v}(\chi N - 1)

\biggr] \biggr\}
.

Then,

sin\theta (\scrX ,\scrR) =O(\rho - N),

where \theta (\scrX ,\scrR) is the largest principal angle between \scrX and the closest subspace of \scrR
to \scrX with the same dimension as \scrX .

Proof. The quantity sin\theta (\scrX ,\scrR) is known as the gap between \scrX and \scrR and can
be expressed as [3], [26, sect. IV.2.1] [38, sect. II.4]:

sin\theta (\scrX ,\scrR) =max
x\in \scrX

min
r\in \scrR

\| x - r\|
\| x\| .

The result follows immediately from this formula and Proposition 3.2.

3.3. A parallel algorithm. Our algorithm builds the subspace \scrR of Corol-
lary 3.3 and then uses Rayleigh--Ritz projection to extract approximations to the x(i)

from \scrR . The procedure is summarized in Algorithm 3.1.

For each Chebyshev node \chi j , Algorithm 3.1 computes the eigenvectors associated
with the nev algebraically smallest eigenvalues of S(\chi j). These eigenvectors form the
s\times nev matrix Yj (step 9). Then, the algorithm computes the matrix Vj , which requires
the solution of a linear system with the coefficient matrix B(\chi j) and nev right-hand
sides (step 10). Finally, the algorithm uses Rayleigh--Ritz projection (steps 15--16) to
approximate the sought eigenpairs of (A,M). The dimension of the projected pencil is

3For example, it can happen that \mu 2(\chi j)<\mu 1(\chi j)<\mu 3(\chi j)< \cdot \cdot \cdot <\mu s(\chi j) for some j. If so, the
eigenvector of S(\chi j) corresponding to its smallest eigenvalue is a sample of y2(\chi j), not y1(\chi j), even
though \mu 1 is the eigencurve for the smallest eigenvalue of (A,M).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S332 T. XU, A. AUSTIN, V. KALANTZIS, AND Y. SAAD

Algorithm 3.1 The proposed algorithm.

1: Input: A\in \BbbR n\times n, M \in \BbbR n\times n, N \in \BbbN , \alpha \in \BbbR , \beta \in \BbbR , nev \in \BbbZ , Y = 0, V = 0
2: Output: approximations of eigenpairs

\bigl(
\lambda i, x

(i)
\bigr)
, i= 1, . . . , nev

3: /* Preprocessing: reorder matrices A and M */
4: \triangleleft Call a p-way edge separator to partition the graph \scrG A,M .
5: \triangleleft If \beta <min

\bigl(
\Lambda (B,MB)

\bigr)
continue, else set p := 2p and repeat step 4.

6: /* Main loop; embarrassingly parallel over the N Chebyshev nodes */
7: for j = 0, . . . ,N - 1 do

8: \triangleleft Set \chi j =
\alpha + \beta

2
+ cos

\biggl(
j\pi

N - 1

\biggr)
\beta - \alpha

2
.

9: \triangleleft Set Yj = [y1(\chi j), . . . , yn\mathrm{e}\mathrm{v}
(\chi j)].

10: \triangleleft Solve B(\chi j)Vj = - E(\chi j)Yj .
11: end for

12: /* Rayleigh-Ritz projection phase */

13: \triangleleft Set R=

\biggl[
V0 \cdot \cdot \cdot VN - 1

Y0 \cdot \cdot \cdot YN - 1

\biggr]
.

14: \triangleleft Optionally, orthonormalize the columns of R.
15: \triangleleft Compute the nev algebraically smallest eigenvalues and associated

eigenvectors of the eigenvalue problem (RTAR)f = \theta (RTMR)f .
16: \triangleleft Return (\theta i, PRf (i))\approx

\bigl(
\lambda i, x

(i)
\bigr)
, i= 1, . . . , nev.

at most Nnev, and the associated eigenvalue problem is solved by a dense, symmetric
eigenvalue solver.

The for loop in steps 7--11 is embarrassingly parallel: each matrix pair (Yj , Vj)
can be computed independently of the other pairs. The computation of Vj can be
further decomposed into the solution of p independent linear systems. Partition Vj

and Yj by rows as

Vj =

\left[V1,j

...
Vp,j

\right] , Yj =

\left[Y1,j

...
Yp,j

\right] ,

where Vk,j and Yk,j are associated with the kth subdomain. Then,\left[B1(\chi j)
. . .

Bp(\chi j)

\right]
\left[V1,j

...
Vp,j

\right] =

\left[E1(\chi j)Y1,j

...
Ep(\chi j)Yp,j

\right]
(where we have extended the notation (3.1) to the blocks comprising B, MB , E, and
ME in the obvious way), and so the Vk,j can be computed by solving

Bk(\chi j)Vk,j = - Ek(\chi j)Yk,j , k= 1, . . . , p.

These p linear systems can be solved in parallel.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION S333

3.4. Practical details. A practical implementation of Algorithm 3.1 will need
to account for certain details, some of which may include the following:

\bullet If the desired number nev of eigenvalues is not known a priori, it can be com-
puted directly by decomposing A - \alpha M and A - \beta M in LDLT factorizations
and using Sylvester's law of inertia [7]. Alternatively, if this is too expensive,
one can estimate nev using a spectral density profile of (A,M) [44]. To re-
duce the chance of the algorithm missing eigenvalues, we recommend taking
nev slightly larger than estimated or required. To further reduce this chance,
one can apply a few steps of subspace iteration or Lanczos with polynomial
filtering and deflation as postprocessing after step 16. Since the number of
iterations needed should not be large, one can use iterative methods to ap-
proximate M - 1 instead of exact factorizations.

\bullet The results of section 3.2 relied on the hypothesis \beta <min
\bigl(
\Lambda (B,MB)

\bigr)
. How

can we enforce this requirement in practice? This is difficult and may even be
impossible for certain special classes of matrices. Nevertheless, we find em-
pirically that, for a general problem, this is not likely to be an issue provided
\beta is not excessively large. Should it happen that this condition is violated,
we also find empirically that the situation frequently can be repaired simply
by increasing p, i.e., by further partitioning the graph into a greater number
of subdomains. Algorithm 3.1 therefore adopts the practical strategy of dou-
bling p until \beta < min

\bigl(
\Lambda (B,MB)

\bigr)
is satisfied (step 5). But we observe that

this was not required in any of the many tests described in section 5.
\bullet Algorithm 3.1 is a ``one-shot"" method in the sense that if the accuracy of the

approximate eigenpairs is not satisfactory, then the whole process must be
repeated with a higher value of N . We find that in practice, N = 8 reaches
nearly the maximum attainable accuracy on a wide range of problems; see
section 5. If one wishes to apply Algorithm 3.1 for several values of N , it
is beneficial to take these N to have the form N(k) = 2k + 1 for integers k.
Having run the algorithm with N =N(k), one can reduce the computational
cost of running the algorithm with N =N(k+ 1) by exploiting the fact that
the nodes (3.9) for N(k) are a subset of those for N(k + 1) and reusing the
samples taken during the N =N(k) run.

\bullet Besides increasing N , one can also improve the accuracy of one or more of the
eigenpairs by using the approximate eigenvectors obtained from Algorithm 3.1
as the initial subspace for an implicitly restarted (or thick-restarted) Lanczos
method [8, 43] applied to (A,M). This technique can also be used to ensure
that all nev eigenpairs of (A,M) have been computed (i.e., none have been
missed) by checking to see if the algebraically smallest eigenvalue returned
by the restarted Lanczos method is smaller than \beta .

4. A distributed-memory implementation. We now describe our parallel
implementation of Algorithm 3.1 based on the MPI standard. Throughout this dis-
cussion, we assume a distributed-memory computing environment with Np = prpc
MPI processes organized in a pr\times pc 2D MPI grid. In addition to the default commu-
nicator MPI COMM WORLD, we denote by Gr

i , i= 0, . . . , pr - 1, and Gc
j , j = 0, . . . , pc - 1,

the MPI communicators associated with the ith row and jth column of the grid,
respectively.

Our parallel implementation utilizes the row dimension of the grid for
domain decomposition data parallelism (i.e., distributed storage of A and M) and
the column dimension of the grid for model parallelism (i.e., distribution over the N

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S334 T. XU, A. AUSTIN, V. KALANTZIS, AND Y. SAAD

Chebyshev nodes). Therefore, the row and column dimensions of the grid satisfy the
inequalities pr \leq p and pc \leq N , respectively.

4.1. Data distribution on 2D MPI grids. First, we consider the data dis-
tribution along the row dimension of the grid. For each communicator Gc

j , j =
0, . . . , pc - 1, we distribute A and M such that the pr MPI processes associated with
Gc

j hold a unique subset of the partitions of the graph \scrG A,M . In particular, let p
be a scalar multiple of pr, and set \tau = p/pr. Then, the ith process is assigned data
associated with partitions i\tau + 1, i\tau + 2, . . . , (i+ 1)\tau , i.e.,

Data held by process i of Gc
j :

\left\{
Bi\tau +1, . . . ,B(i+1)\tau ,MBi\tau +1 , . . . ,MB(i+1)\tau

Ei\tau +1, . . . ,E(i+1)\tau ,MEit+1
, . . . ,ME(i+1)\tau

Ci\tau +1,:, . . . ,C(i+1)\tau ,:,MCi\tau +1,:
, . . . ,MC(i+1)\tau ,:

,

where the subscript ``:"" represents all column indices of matrices C and MC . Or-
dering the unknowns/equations by increasing MPI rank leads to the following global
representation of A (and similarly for M):

A=

\left[

B1 E1

ET
1 C1,1 C1,2 C1,pr

B2 E2

C2,1 ET
2 C2,2 C2,pr

. . .

Bpr
Epr

Cpr,1 Cpr,2 ET
pr

Cpr,pr

\right]
.(4.1)

The ordering in (4.1) is more natural from the perspective of parallel computing than
that in (2.1), which is more natural for discussing the linear algebra.

We now focus on the column dimension of the grid. Let N be a scalar multiple
of pc, and set \eta = N/pc. We distribute the N Chebyshev nodes across the pc MPI
processes of each row communicator Gr

i , i = 0, . . . , pr - 1, such that each process
receives exactly \eta unique Chebyshev nodes. In particular, the jth process associated
is assigned the Chebyshev node(s) \chi j\eta +1, . . . , \chi (j+1)\eta j = 0, . . . , pc - 1. From a parallel
efficiency perspective, it is advisable to exhaust parallelism across the N Chebyshev
nodes first, by setting pc =N , since this level of parallelism involves no communication
among groups of processes assigned different Chebyshev nodes.

An illustration of the data distribution on a 2D MPI grid with Np = 16 processes
and N = 8 Chebyshev nodes is shown in Figures 4.1 and 4.2, where the dimensions
of the grid are (pr, pc) = (4,4) and (pr, pc) = (2,8), respectively. For the (4,4) case,
we have pc < N , and each column subgrid is responsible for processing h = 8/4 = 2
Chebyshev nodes, while the computation of each matrix pair (Yj , Vj) exploits four
MPI processes. Contrast this with the (2,8) case, in which each separate column
subgrid handles exactly one Chebyshev node (\eta = 1), leading to trivial parallelism
with respect to the N Chebyshev nodes, but the computation of each matrix pair
(Yj , Vj) utilizes just two processes.

4.2. Computation of Yj via PARPACK. Our implementation computes the eigen-
vectors of the Schur complement matrices S(\chi j), j = 0, . . . ,N - 1, via the PARPACK4

software library, a distributed-memory implementation of ARPACK [30]. The main

4https://github.com/opencollab/arpack-ng

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

https://github.com/opencollab/arpack-ng

PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION S335

Gc
0 Gc

1 Gc
2 Gc

3

Gr
0

Gr
1

Gr
2

Gr
3

p0

p4

p8

p12

p1

p5

p9

p13

p2

p6

p10

p14

p3

p7

p11

p15

B1, E1, C1,1, C1,2, C1,3, C1,4

B2, E2, C2,1, C2,2, C2,3, C2,4

B3, E3, C3,1, C3,2, C3,3, C3,4

B4, E4, C4,1, C4,2, C4,3, C4,4

\chi 0, \chi 1 \chi 2, \chi 3 \chi 4, \chi 5 \chi 6, \chi 7

Fig. 4.1. Distribution of blocks of A and Chebyshev nodes over a 2D MPI grid with Np = 16,
N = 8, and (pr, pc) = (4,4). The distribution of M is identical to that of A.

Gc
0 Gc

1 Gc
2 Gc

3 Gc
4 Gc

5 Gc
6 Gc

7

Gr
0

Gr
1

p0

p8

p1

p9

p2

p10

p3

p11

p4

p12

p5

p13

p6

p14

p7

p15

B1, E1, C1,1, C1,2

B2, E2, C2,1, C2,2

\chi 0 \chi 1 \chi 2 \chi 3 \chi 4 \chi 5 \chi 6 \chi 7

Fig. 4.2. Distribution of blocks of A and Chebyshev nodes over a 2D MPI grid with Np = 16,
N = 8, and (pr, pc) = (2,8). The distribution of M is identical to that of A.

distributed-memory kernels of PARPACK are (a) orthogonalization of the Krylov basis
and (b) a user-defined routine that performs distributed matrix-vector multiplication
with S(\chi j).

Regarding (a), consider first the case pc = N . Orthonormalizing the basis vec-
tors computed on each m-step cycle of the implicitly restarted Arnoldi method via
Gram--Schmidt costs O(sm2) floating-point operations and O

\bigl(
log(pr)m

2
\bigr)
point-to-

point MPI messages. This communication cost increases proportionally with the
number of Chebyshev nodes processed by each column subgrid. In particular, when
pc = 1, i.e., all available Np MPI processes are assigned to the default communicator,
PARPACK requires O

\bigl(
N log(Np)m

2
\bigr)
MPI messages just for Gram--Schmidt.

As for (b), note that the product between the distributed matrix S(\chi j) and a

distributed vector f =
\bigl[
fT
1 \cdot \cdot \cdot fT

p

\bigr] T \in \BbbR s can be written as

S(\chi j)f =

\left[
\sum

k\in \scrN 1

C1,k(\chi j)fk

...\sum
k\in \scrN p

Cp,k(\chi j)fk

\right] -

\left[E1(\chi j)
TB1(\chi j)

 - 1E1(\chi j)f1
...

Ep(\chi j)
TBp(\chi j)

 - 1Ep(\chi j)fp

\right] ,(4.2)

where \scrN i denotes the list of partitions adjacent to partition i (and where we have
extended the notation (3.1) to the blocks of A - \zeta M defined by (4.1) in the obvious
way). Due to the partitioning, the second term on the right-hand side of (4.2) can be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S336 T. XU, A. AUSTIN, V. KALANTZIS, AND Y. SAAD

computed in an embarrassingly parallel manner. On the other hand, the first term of
the right-hand side of (4.2) requires point-to-point communication between processes
handling neighboring partitions.

4.3. Orthonormalization of the Rayleigh--Ritz basis. Our implementation
orthonormalizes the columns of the Rayleigh--Ritz projection matrix R via Gram--
Schmidt. To take advantage of all Np MPI processes, we exploit the default commu-
nicator MPI COMM WORLD.

The (i, j) process of the pr \times pc 2D MPI grid holds the submatrices Vi,j and Yi,j ,
leading to the following representation of R as a 2D logical array:

\widehat R2\mathrm{D} =

Gc
0 Gc

1 \cdot \cdot \cdot Gc
pc - 1\left[

\right]

\biggl[
V0,0

Y0,0

\biggr] \biggl[
V0,1

Y0,1

\biggr]
\cdot \cdot \cdot

\biggl[
V0,pc - 1

Y0,pc - 1

\biggr]
Gr

0

...
...

...
...

...\biggl[
Vpr - 1,0

Ypr - 1,0

\biggr] \biggl[
Vpr - 1,1

Ypr - 1,1

\biggr]
\cdot \cdot \cdot

\biggl[
Vpr - 1,pc - 1

Ypr - 1,pc - 1

\biggr]
Gr

pr - 1

.

The goal is to transform \widehat R2D into an n \times Nnev matrix R1D such that each one of
the Np processes holds a submatrix that has roughly n/Np rows and Nnev columns.
This can be achieved by the following two-step procedure. First, we perform a gather

reduction on the submatrices
\bigl[
V T
i,j Y T

i,j

\bigr] T
, j = 0, . . . , pc - 1. This reduction is per-

formed independently within each communicator Gr
i , i = 0, . . . , pr - 1. Second, each

process associated with Gr
i discards all rows of the previously reduced matrix except

for a unique, contiguous set of rows. We can then write

R1D =

\left[

V0,0 \cdot \cdot \cdot V0,pc - 1

Y0,0 \cdot \cdot \cdot Y0,pc - 1

... \cdot \cdot \cdot
...

... \cdot \cdot \cdot
...

Vpr - 1,0 \cdot \cdot \cdot Vpr - 1,pc - 1

Ypr - 1,0 \cdot \cdot \cdot Ypr - 1,pc - 1

\right]
=

\left[

R0,0

...
R0,pc - 1

...
Rpr - 1,0

...
Rpr - 1,pc - 1

\right]
,(4.3)

where Ri,j is held by the MPI process of rank ipc+j associated with MPI COMM WORLD,
i.e., the jth process associated with the row communicator Gr

i . This can be done
efficiently in a single line of code by calling MPI Alltoall independently within each
communicator Gr

i , i = 0, . . . , pr - 1. A graphical illustration of this 2D-to-1D grid
remapping is shown in Figure 4.3.

Once the remapping is complete, we apply distributed block Gram--Schmidt to
the columns of R1D using MPI COMM WORLD and a block size equal to nev. Then, we
map R1D back to the 2D layout by reversing the above procedure. For further details
on parallel Gram--Schmidt, including a discussion of numerical stability, see [4, 9].

4.4. Formation and solution of the projected eigenvalue problem. Fi-
nally, we form the projected pencil (RTAR,RTMR) and find its eigenvalues. As the
projected pencil is small, once it is formed, we compute its eigenvalues serially us-
ing the DSYGVX routine from LAPACK [2]. The remainder of this section is devoted to
discussing our approach to forming RTAR within the 2D distributed-memory data
layout described above. The procedure for forming RTMR is identical.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION S337

Gr
4

Gr
3

Gr
2

Gr
1

Gc
1 Gc

2 Gc
3 Gc

4

p12

p8

p4

p0

p13

p9

p5

p1

p14

p10

p6

p2

p15

p11

p7

p3

\Leftarrow \Rightarrow

\Leftarrow \Rightarrow

\Leftarrow \Rightarrow

\Leftarrow \Rightarrow

p12

p13

p14

p15

p8

p9

p10

p11

p4

p5

p6

p7

p0

p1

p2

p3

Fig. 4.3. 2D-to-1D (and vice versa) MPI grid mapping. Left: color/pattern layout of a 2D grid
of MPI processes with pc = pr = 4. Right: color/pattern layout of the same grid collapsed into a 1D
MPI grid topology.

We form RTAR in two phases. Let Rj =
\bigl[
V T
j Y T

j

\bigr] T
. In the first phase, we

compute AR =
\bigl[
AR0 AR1 \cdot \cdot \cdot ARN - 1

\bigr]
. When pc = N , this operation is embar-

rassingly parallel since each of the products ARj , j = 0, . . . ,N - 1, can be computed
independently. Using the rank-based representation of A from (4.1), we write

ARj =

\left[

B1 E1

ET
1 C1,1 C1,2 C1,pr

B2 E2

C2,1 ET
2 C2,2 C2,pr

. . .

Bpr
Epr

Cpr,1 Cpr,2 ET
pr

Cpr,pr

\right]

\left[

V0,j

Y0,j

V1,j

Y1,j

...
Vpr - 1,j

Ypr - 1,j

\right]
.(4.4)

Communication between different MPI processes of Gc
j is point-to-point, and the ith

process needs to send Yi,j to the kth process if and only if Ck,i \not = 0.
The second phase multiplies RT and AR and stores the matrix product in the

root process of MPI COMM WORLD. To achieve this, we apply the following procedure,
which is illustrated in Figure 4.4:

1. Apply MPI Allgather on the submatrices [ARj]i, j = 0, . . . , pc - 1, across the
row communicator Gr

i , where [ARj]i denotes the submatrix of ARj held by
the ith process. Each process associated with Gr

i then has its own copy of
the matrix

\bigl[
[AR0]i [AR2]i \cdot \cdot \cdot [ARpc - 1]i

\bigr]
.

2. The ith process associated with the column communicator Gc
j then computes

Zi,j = RT
i,j

\bigl[
[AR0]i [AR2]i . . . [ARpc - 1]i

\bigr]
and calls MPI Reduce on the

data Zi,j associated with the processes in Gc
j .

3. At the end of the previous step, the kth MPI process associated with Gr
0 holds

the kth block of rows of the matrix RTAR. Finally, all processes in Gr
0 call

MPI Gather, creating RTAR in the root process.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S338 T. XU, A. AUSTIN, V. KALANTZIS, AND Y. SAAD

\ttM \ttP \ttI \ttA \ttl \ttl \ttg \tta \ttt \tth \tte \ttr

Step 1

\ttM \ttP \ttI \ttR \tte \ttd \ttu \ttc \tte

Step 2

\ttM \ttP \ttI \ttG \tta \ttt \tth \tte \ttr

Step 3

Fig. 4.4. Communication pattern for the distributed-memory computation of RTAR and
RTMR using our 2D MPI data layout (pr = pc = 4). The root process of MPI COMM WORLD is lo-
cated in the upper-left corner.

5. Numerical experiments. We now illustrate the performance of Algorithm
3.1 in both sequential and distributed-memory computing environments. We per-
formed our experiments on the Minnesota Supercomputing Institute's Mesabi clus-
ter. Each node of Mesabi is equipped with 64GB of system memory and two 12-core
2.5GHz Intel Xeon E5-2680v3 (Haswell) CPUs. We built our code with the Intel ICC
18.0.0 compiler. We used the Intel Math Kernel Library (MKL) for basic matrix op-
erations, including its sparse matrix routines and its implementation of the standard
BLAS and LAPACK libraries for sequential dense matrix operations. While it is possible
to exploit shared-memory parallelism, the experiments described below use just one
thread per MPI process.

To compute the nev sought eigenvectors of the spectral Schur complements S(\chi j),
we used PARPACK with full orthogonalization and restart dimension m = 2nev. The
linear systems involving the block-diagonal matrix B(\chi j) were solved with the Intel
MKL implementation of the PARDISO solver. For the search interval [\alpha ,\beta], we set
\alpha = 0, \beta = (\lambda n\mathrm{e}\mathrm{v} + \lambda n\mathrm{e}\mathrm{v}+1)/2 in all experiments.

5.1. Numerical illustration. We first demonstrate the qualitative performance
of Algorithm 3.1 on a set of four small problems:

\bullet ``APF4686,"" a standard eigenvalue problem of dimension n= 4,686 generated
by the ELSES quantum mechanical nanomaterial simulator5 [16],

\bullet ``Kuu/Muu,"" a generalized eigenvalue problem of dimension n = 7,102 from
the SuiteSparse matrix collection6 [10],

\bullet ``FDmesh,"" a standard eigenvalue problem generated by a regular 5-point
finite difference discretization of the Laplacian on a square, and

\bullet ``FEmesh,"" a generalized eigenvalue problem obtained by discretizing the
Laplacian on a square with linear finite elements.

For the latter two, the discretization fineness was chosen to yield matrices of dimension
n\approx 20,000, and the associated pencils have several eigenvalues of multiplicity 2.

Figure 5.1 plots the relative errors in the eigenvalues returned by Algorithm 3.1
and the corresponding residual norms for the problems ``APF4686"" (left, nev = 30)
and ``Kuu/Muu"" (right, nev = 100) for N = 2,4,6,8. Figure 5.2 plots the same
quantities for ``FDmesh"" (left) and ``FEmesh"" (right), where nev = 100 in both cases.

5http://www.elses.jp
6https://sparse.tamu.edu/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

http://www.elses.jp
https://sparse.tamu.edu/

PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION S339

5 10 15 20 25 30
10

-16

10
-12

10
-8

10
-4

10
0

20 40 60 80 100
10

-16

10
-12

10
-8

10
-4

10
0

5 10 15 20 25 30
10

-12

10
-8

10
-4

10
0

20 40 60 80 100
10

-10

10
-6

10
-2

10
2

2 4 6 8
10

-15

10
-10

10
-5

10
0

2 4 6 8

10
-10

10
-5

10
0

Fig. 5.1. Relative errors in the eigenvalues returned by Algorithm 3.1 (top) and corresponding
residual norms (center) for various values of N for the problems ``APF4686"" (left, n\mathrm{e}\mathrm{v} = 30) and
``Kuu/Muu"" (right, n\mathrm{e}\mathrm{v} = 100). The bottom two figures plot the maximum relative error in the
eigenvalues and the maximum residual norm across all n\mathrm{e}\mathrm{v} eigenpairs.

In agreement with the discussion in section 3, increasingN leads to greater accuracy in
the approximation of the sought eigenpairs. Moreover, all eigenpairs are approximated
to comparable accuracies for a given value of N ; i.e., the accuracy of an eigenpair is
relatively insensitive to the location of the eigenvalue inside [\alpha ,\beta].

5.2. Distributed-memory performance. We now illustrate the distributed-
memory efficiency of Algorithm 3.1 on a variety of larger problems coming from dis-
cretizations of the Laplacian as well as general symmetric matrices and pencils from
the SuiteSparse collection. Unless otherwise indicated, throughout the rest of this
section, we take nev = 100, and we set the second dimension of the 2D MPI grid to be
pc =N . In most of the tests, we report the results with N = 8 or N = 4. The parallel
efficiency of a program executing on \phi \in \BbbN processes is P (\phi) = T1/(\phi T\phi), where T\phi

denotes the wall-clock time for execution on \phi processes.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S340 T. XU, A. AUSTIN, V. KALANTZIS, AND Y. SAAD

20 40 60 80 100
10

-16

10
-12

10
-8

10
-4

10
0

20 40 60 80
10

-16

10
-12

10
-8

10
-4

10
0

20 40 60
10

-10

10
-6

10
-2

10
2

20 40 60 80
10

-10

10
-6

10
-2

10
2

2 4 6 8

10
-10

10
-5

10
0

2 4 6 8
10

-15

10
-10

10
-5

10
0

Fig. 5.2. Relative errors in the eigenvalues returned by Algorithm 3.1 (top) and corresponding
residual norms (center) for various values of N for the problems ``FDmesh"" (left) and ``FEmesh""
(right). The bottom two figures plot the maximum relative error in the eigenvalues and the maximum
residual norm across all n\mathrm{e}\mathrm{v} eigenpairs.

We benchmark Algorithm 3.1 against PARPACK applied directly to the pencil
(A,M) both with and without shift-and-invert. PARPACK requires the application
of either M - 1 (without shift-and-invert) or A - 1 (with shift-and-invert), and since A
and M are distributed, we used a distributed direct solver for these operations. The
results reported here were generated using the MUMPS package [1], but our code also
provides interfaces for SuperLU Dist [32] and the Intel Cluster Sparse Solver (pro-
vided in the MKL). For PARPACK, we report the wall-clock time and parallel efficiency
for a restart length equal to m = 2nev with all MPI processes bundled in the de-
fault communicator MPI COMM WORLD. To keep the comparisons fair, the convergence
tolerance passed to PARPACK for each problem is set to the maximum residual norm
returned by Algorithm 3.1.

5.2.1. Eigenvalue problems from finite difference discretizations. First,
we apply Algorithm 3.1 to matrices arising from finite difference discretizations of the
Dirichlet eigenvalue problem,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION S341

Table 5.1
Maximum relative error in the eigenvalues returned by Algorithm 3.1 for the finite difference

problems.

n= 257\times 256 n= 513\times 512 n= 1025\times 1024 n= 65\times 64\times 63

SchurCheb(4) 5.1\times 10 - 4 8.2\times 10 - 5 1.4\times 10 - 4 9.1\times 10 - 5

SchurCheb(8) 2.3\times 10 - 9 2.9\times 10 - 11 2.5\times 10 - 7 1.9\times 10 - 10

 - \Delta u= \lambda u in \Omega

u= 0 on \partial \Omega ,
(5.1)

where \Delta denotes the Laplacian and \Omega is either the square (0,1)2 in two dimensions
or the cube (0,1)3 in three dimensions. We use the standard 5- and 7-point stencils
in two and three dimensions, respectively. All these eigenvalue problems are standard
ones, with M equal to the identity matrix.

Our first set of experiments focuses on the strong scaling of Algorithm 3.1. We
take nev = 100 and use N = 4,8 Chebyshev nodes. In our results, we refer to Al-
gorithm 3.1 with N = 4 as SchurCheb(4) and with N = 8 as SchurCheb(8). We
first consider three different 2D discretizations with matrix sizes n = 257 \times 256,
n = 513 \times 512, and n = 1025 \times 1024, respectively. Table 5.1 lists the maximum
relative error in the eigenvalues returned by Algorithm 3.1. Figure 5.3 (left) plots
the parallel efficiency of Algorithm 3.1 for N = 8, where we report separately the
parallel efficiencies associated with (a) computation of the eigenvector matrices Yj ,
j = 0, . . . ,N - 1, (b) orthonormalization of the projection matrix R, and (c) everything
else. Since pc = N , the computation of the Yj is embarrassingly parallel, leading to
nearly perfect efficiency for this step. On the other hand, both the orthonormaliza-
tion of R and the formation of RTAR require communication among the Np processes,
and their efficiency can deteriorate for larger values of Np. Note also that the par-
allel granularity of Algorithm 3.1 is lower for smaller problem sizes, leading to lower
efficiencies compared to larger problems.

Figure 5.3 (right) plots the wall-clock time achieved by Algorithm 3.1 for N = 4,8,
PARPACK with and without shift-and-invert, and the Locally Optimal Block Precondi-
tioned Conjugate Gradient (LOBPCG) method as implemented in the BLOPEX package
of hypre [11]. The wall-clock times of LOBPCG were obtained with AMG precondition-
ing, and we present the best (lowest) times after performing extensive tests involving
various choices for the hyperparameters and preconditioners. Regarding the perfor-
mance of PARPACK, note that due to the fact that A comes from a 2D discretization,
shift-and-invert is generally very fast when the direct solver scales satisfactorily; how-
ever, the efficiency of MUMPS falls off faster than that of Algorithm 3.1 as Np increases,
and for larger values of Np, Algorithm 3.1 becomes the fastest and most scalable ap-
proach. Similarly, LOBCPG is competitive with Algorithm 3.1 for smaller values of Np

but becomes comparatively slower as Np increases.
Figure 5.4 plots the same quantities for a 3D discretization matrix of size n =

65 \times 64 \times 63. The main difference between the 2D and 3D cases is that PARPACK

without shift-and-invert now converges much faster, leading to lower orthogonaliza-
tion costs. Moreover, because A is banded, the parallel efficiency of distributed-
memory sparse matrix-vector products with A remains high even when Np = 256.
Nonetheless, Algorithm 3.1 still attains greater strong scaling efficiency than PARPACK

(with or without shift-and-invert) and hence will outperform it given enough parallel
resources.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S342 T. XU, A. AUSTIN, V. KALANTZIS, AND Y. SAAD

2 4 8 16 32 64 128

50

100

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of 257 × 256 Laplacian

2 4 8 16 32 64 128

101

102

Number of MPI processes

T
im

e
(s
)

Time of 257× 256 Laplacian

8 16 32 64 128 256

50

100

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of 513 × 512 Laplacian

8 16 32 64 128 256

101

102

Number of MPI processes

T
im

e
(s
)

Time of 513× 512 Laplacian

64 128 256 512

50

100

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of 1025 × 1024 Laplacian

lanczos orthogonalization
other total

64 128 256 512
101

102

Number of MPI processes

T
im

e
(s
)

Time of 1025× 1024 Laplacian

SchurCheb(8) SchurCheb(4) parpack
parpack-shift-invert lobpcg-amg

Fig. 5.3. Left: parallel efficiency of Algorithm 3.1 with n\mathrm{e}\mathrm{v} = 100 and pc = N = 8. Right:
wall-clock time comparison between Algorithm 3.1 with N = 4,8 and PARPACK with and without
shift-and-invert. The number of MPI processes ranges from Np = 2 to Np = 512. The number of
partitions is set equal to p= 32 (n= 257\times 256), p= 64 (n= 513\times 512), and p= 128 (n= 1025\times 1024)
when N = 8. The value of p is doubled when N = 4 since each column communicator now has twice
as many processes.

8 16 32 64 128 256

60

80

100

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of 65 × 64 × 63 Laplacian

lanczos orthogonalization
other total

8 16 32 64 128 256

101

102

Number of MPI processes

T
im

e
(s
)

Time of 65× 64× 63 Laplacian

SchurCheb(8) SchurCheb(4) arpack
arpack-shift-invert lobpcg-amg

Fig. 5.4. Left: parallel efficiency of Algorithm 3.1 with n\mathrm{e}\mathrm{v} = 100 and pc = N = 8. Right:
wall-clock time comparison between Algorithm 3.1 with N = 4,8 and PARPACK with and without
shift-and-invert. The number of MPI processes ranges from Np = 8 to Np = 256. The number of
partitions is set to p= 64 (N = 8) and p= 128 (N = 4).

As Algorithm 3.1 does not need to factor A, it requires considerably less storage
than PARPACK with shift-and-invert. Table 5.2 lists the global peak memory con-
sumption for both of these algorithms for the finite difference discretization problems

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION S343

Table 5.2
Peak memory consumption of Algorithm 3.1 and of PARPACK with shift-and-invert for the finite

difference problems.

n= 257\times 256 n= 513\times 512 n= 1025\times 1024 n= 65\times 64\times 63

Np = 128 Np = 256 Np = 512 Np = 256

SchurCheb(4) 1.2 GB 2.4 GB 9.3 GB 2.3 GB

SchurCheb(8) 2.2 GB 4.6 GB 18.8 GB 4.6 GB

PARPACK 21.4 GB 45.0 GB 106.4 GB 46.6 GB

Table 5.3
Partitioning information for the test matrices arising from regular finite difference discretiza-

tions of the Laplacian in two and three dimensions.

Size N p d s

8 128 1,002,735 46,865
1025\times 1024 4 256 982,871 66,729

8 64 247,046 15,610
513\times 512 4 128 240,021 22,635

8 32 60,722 5,070
257\times 256 4 64 58,315 7,477

8 64 193,420 68,660
65\times 64\times 63 4 128 171,288 90,792

just described. Even with N = 8 Chebyshev nodes, Algorithm 3.1 uses 5 to 10 times
less memory than shift-and-invert PARPACK across all problems.

Table 5.3 presents statistics on the partitioning of the matrices used in the exper-
iments of Figures 5.3 and 5.4. When the number N of Chebyshev nodes is cut from
N = 8 to N = 4, the number p of subdomains is doubled to keep the total number
of MPI processes constant. The dimension s of the Schur complement ranges from
about 5,000 for the 257 \times 256 2D Laplacian with p = 8 up to just over 90,000 for
the 65 \times 64 \times 63 3D Laplacian with p = 4. In all cases, the value of s is consider-
ably (roughly 2 to 10 times) smaller than the dimension d of the corresponding B
block.

We now focus on the performance of Algorithm 3.1 when the problem size n
and number of partitions p are fixed and Np varies proportionally to N . We set
p = pr = 8 and pc = N , where N = 2,4, . . . ,16. For this experiment, we consider
the 2D discretizations of sizes n= 257\times 256 and n= 513\times 512 and report the wall-
clock times for each major operation of Algorithm 3.1 in Figure 5.5. The amount of
time spent computing the matrices Yj and Vj is nearly constant since the maximum
number of matrix-vector products (iterations) required by PARPACK to compute each
Yj is more or less the same for each Np (see the solid lines). On the other hand,
the amount of time required for orthonormalization and the Rayleigh--Ritz projection
both increase due to (a) higher computational complexity and (b) a higher volume of
communication among the increasing number of MPI processes.

Next, we evaluate the performance of Algorithm 3.1 when computing different
numbers of eigenvalues (different nev) for the same matrix. We consider the 2D
discretizations of sizes n= 257\times 256 and n= 513\times 512. In each group of tests, we fix
p, pr, pc, and Np and then vary nev. For the n= 257\times 256 problem, we take Np = 128
and pr = N and then set p = 16 when N = 8 and p = 32 when N = 4. For the
n = 512\times 512 problem, we double p and Np. Figure 5.6 reports the total wall-clock
times for Algorithm 3.1 under these configurations, taking nev = 50,100,150,200,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S344 T. XU, A. AUSTIN, V. KALANTZIS, AND Y. SAAD

8 16 32 48 64 80 96 128
10−2

10−1

100

101

Number of MPI processes

T
im

e
(s
)

Weak scaling of 257× 256 Laplacian

600

800

1,000

1,200

1,400

N
u
m
b
er

of
S
p
M
V

Weak scaling of 257× 256 Laplacian

8 16 32 48 64 80 96 128
10−1

100

101

Number of MPI processes

T
im

e
(s
)

Weak scaling of 513× 512 Laplacian

1,000

1,500

2,000

N
u
m
b
er

of
S
p
M
V

Weak scaling of 513× 512 Laplacian

lanczos orthogonalization other nmvs

Fig. 5.5. Weak scaling with respect to N (pr = 8, pc = N) for two 2D finite difference dis-
cretization problems. The number of MPI processes ranges from Np = 8 to Np = 128. The solid
orange lines denote the maximum number of iterations required by PARPACK to compute the matrices
Yj , j = 0, . . . ,N - 1.

50 100 150 200
100

101

Number of Eigenvalues

T
im

e
(s
)

2D Laplacian, 257× 256

500

1,000

1,500

2,000

N
u
m
b
er

of
S
p
M
V

2D Laplacian, 257× 256

SchurCheb(8) SchurCheb(4) arpack arpack-shift-invert lobpcg-amg nmvs(8) nmvs(4)

50 100 150 200
100

101

102

Number of Eigenvalues

T
im

e
(s
)

2D Laplacian, 513× 512

1,000

2,000

3,000

4,000

N
u
m
b
er

of
S
p
M
V

2D Laplacian, 513× 512

Fig. 5.6. Scaling with respect to n\mathrm{e}\mathrm{v} for two 2D finite difference discretization problems. The
number of MPI processes are Np = 128 and Np = 256, respectively. The solid orange lines denotes
the maximum number of iterations required by PARPACK to compute the matrices Yj , j = 0, . . . ,N - 1,
in Algorithm 3.1.

Table 5.4
Wall-clock time breakdown of Algorithm 3.1 for various 2D MPI grid topologies (RR: Rayleigh--

Ritz, GS: Gram--Schmidt).

(pr, pc) Setup Y0,...,N - 1 V0,...,N - 1 GS RR DSYGVX Total

(128,1) 1.42 26.08 0.35 1.41 1.76 0.14 31.17

(64,2) 0.68 18.06 0.36 1.94 1.81 0.14 23.15
(32,4) 0.32 13.95 0.35 1.71 1.91 0.14 18.41

(16,8) 0.18 13.21 0.35 1.65 2.03 0.14 17.61

as well as those for PARPACK (with and without shift-and-invert) and LOBPCG. The
cost of solving the Schur complement eigenvalue problems in Algorithm 3.1 at each
Chebyshev node increases as nev increases. Nonetheless, Algorithm 3.1 still attains
wall-clock times that are competitive with PARPACK and LOBPCG.

In the preceding experiments, we took pc = N . As our final experiment in this
section, we consider the effect of varying the 2D MPI grid topology. We consider
the 2D discretizations of sizes n = 513 \times 512. We take N = 8, Np = p = 128,
nev = 100 and vary the topology as (pr, pc) = (128,1), (64,2), (32,4), (16,8). Table 5.4
lists a breakdown of the wall-clock times for the various parts of Algorithm 3.1 for
each topology. The topology (pr, pc) = (128,1) processes the N Chebyshev nodes
sequentially, one after the other, but uses all Np MPI processes during the com-
putation of each matrix pair (Yj , Vj), j = 0, . . . ,N - 1, taking on average (26.08 +
0.35)/8 \approx 3.3 seconds for each. At the other extreme, the topology (pr, pc) = (16,8)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION S345

16 32 64 128

50

100

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of rectangular mesh, n = 178, 464

16 32 64 128

101

102

Number of MPI processes

T
im

e
(s

)

Time of rectangular mesh, n = 178, 464

16 32 64 128

50

100

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of circular mesh, n = 146, 093

16 32 64 128

101

102

Number of MPI processes

T
im

e
(s

)

Time of circular mesh, n = 146, 093

128 256 512

50

100

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of 3D mesh, n = 170, 967

lanczos orthogonalization other total

128 256 512

101

101.5

Number of MPI processes

T
im

e
(s

)
Time of 3D mesh, n = 170, 967

SchurCheb(8) SchurCheb(4) arpack-shift-invert

Fig. 5.7. Left: parallel efficiency of Algorithm 3.1 applied to the finite element problems with
n\mathrm{e}\mathrm{v} = 100 and pc = N = 8. Right: wall-clock time comparison between Algorithm 3.1 with N = 4
and N = 8 and PARPACK with shift-and-invert. The number of MPI processes ranges from Np = 8 to
Np = 512. The number of partitions is set equal to p= 16 for the 2D meshes and p= 64 for the 3D
mesh.

processes the N Chebyshev nodes completely in parallel, but now computing each
(Yj , Vj) requires more time---in the worst case, approximately four times as much
(13.21 + 0.35 = 13.56 seconds)---since only pr = 16 processes are available for par-
allelization of those computations. Nevertheless, the total time to solution is nearly
halved with (pr, pc) = (16,8) versus (pr, pc) = (128,1). Thus, in agreement with our
previous results, setting pc =N is best unless the smaller value of pr creates a memory
bottleneck.

5.2.2. Eigenvalue problems from finite element discretizations. To illus-
trate the performance of Algorithm 3.1 for generalized eigenvalue problems, we again
consider matrices arising from discretizations of (5.1) but with linear finite elements
instead of finite differences. In two dimensions, we consider the square \Omega = (0,1)2

and the disc \Omega = \{ (x, y) : x2 + y2 \leq 1\} , both meshed with unstructured triangu-
lar elements. In three dimensions, we consider the cube \Omega = (0,1)3, meshed with
unstructured tetrahedra.

Figure 5.7 plots the parallel efficiency of Algorithm 3.1 (left) and associated wall-
clock times as Np varies. We also plot the wall-clock time of PARPACK with shift-
and-invert but omit results for PARPACK without shift-and-invert, which required an
excessive amount of time to converge for these problems. The small sizes of the prob-
lems (n \approx 150,000) have been chosen intentionally in order to simulate an environ-
ment with an abundance of parallel resources. As in the experiments of the previous

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S346 T. XU, A. AUSTIN, V. KALANTZIS, AND Y. SAAD

50 100 150 200
100

101

102

Number of Eigenvalues

T
im

e
(s
)

Circular mesh, n = 146, 093

0

1,000

2,000

3,000

N
u
m
b
er

of
S
p
M
V

Circular mesh, n = 146, 093

SchurCheb(8) SchurCheb(4) arpack arpack-shift-invert lobpcg-amg nmvs(8) nmvs(4)

50 100 150 200
100

101

102

Number of Eigenvalues

T
im

e
(s
)

Rectangular mesh, n = 178, 464

0

1,000

2,000

N
u
m
b
er

of
S
p
M
V

Rectangular mesh, n = 178, 464

50 100 150 200
100

101

102

103

Number of Eigenvalues

T
im

e
(s
)

3D mesh, n = 170, 967

1,000

1,100

1,200

1,300

N
u
m
b
er

of
S
p
M
V

3D mesh, n = 170, 967

Fig. 5.8. Scaling with respect to n\mathrm{e}\mathrm{v} for three finite element problems. The numbers of MPI
processes are Np = 128 for the 2D domains and Np = 512 for the 3D domain. The solid red
lines denote the maximum number of iterations required by PARPACK to compute the matrices Yj ,
j = 0, . . . ,N - 1, in Algorithm 3.1.

Table 5.5
Total wall-clock time for Algorithm 3.1 and PARPACK with shift-and-invert for the finite element

problems with Np = 512, p= 128, and pc =N .

2D square 2D disc 3D cube
n= 1,086,615 n= 845,397 n= 1,351,083

SchurCheb(4) 17.2 s 18.3 s 90.1 s

PARPACK 33.6 s 25.9 s 90.3 s

section, Algorithm 3.1 attains high parallel efficiency and scales better than PARPACK.
The efficiency of the orthogonalization step in Algorithm 3.1 dropped below 50\% for
the 3D case when Np = 512 due to a large communication-to-computation ratio for
the Gram--Schmidt process; nevertheless, the overall efficiency is still close to 100\%.

Next, we show the results of a test similar to one in the previous section, wherein
Algorithm 3.1 is applied to a given problem for increasing values of nev. As before, we
fix p, pr, pc, and Np for each group of tests and vary nev as nev = 50,100,150,200. We
use the same finite element problems of the previous experiment set pc = N . When
N = 8, we use Np = 128 and p= 16 for the 2D domains and Np = 512 and p= 64 for
the 3D domains. When N = 4, we double p. The results are reported in Figure 5.8.
Again, Algorithm 3.1 attains times to solution that are competitive with PARPACK,
even though the cost of solving the local eigenvalue problems at each Chebyshev node
increases with nev.

Finally, Table 5.5 lists the wall-clock times for Algorithm 3.1 and PARPACK with
shift-and-invert on a set of larger finite element problems. For Algorithm 3.1 we
report the wall-clock times for the case Np = 512 and pc = N = 4; for PARPACK, we
report the best (lowest) wall-clock time obtained over several runs with different Np.
Algorithm 3.1 was twice as fast for the 2D problems and about as fast as PARPACK

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION S347

Table 5.6
Problems from the SuiteSparse matrix collection. Here, n denotes the size of the pencil (A,M);

nnz(\cdot) counts the number of nonzero entries in its argument; and p denotes the number of partitions
for the case N = 8.

Dataset n p nnz(A)/n nnz(M)/n Application

qa8fk/qa8fm 66,172 16 25.10 25.1 3D acoustics
af shell3 504,855 64 34.80 1.0 structural problem

tmt sym 726,713 64 6.99 1.0 electromagnetics

ecology2 999,999 64 5.00 1.0 2D/3D problem
thermal2 1,228,045 64 6.99 1.0 thermal problem

for the 3D problem. Note, though, that in addition to having superior7 scalability,
Algorithm 3.1 also uses much less memory.

5.2.3. Eigenvalue problems from the SuiteSparse collection. Finally, to
demonstrate the performance of Algorithm 3.1 for more general matrices, we apply
it to several problems taken from the SuiteSparse matrix collection with sizes rang-
ing from n = 66,172 to n = 1,222,045. Additional details are given in Table 5.6.
The ``qa8fk/qa8fm"" problem is a generalized eigenvalue problem; the other four are
standard problems (M is the identity matrix).

Figure 5.9 plots the parallel efficiency (left) and wall-clock time (right) for Al-
gorithm 3.1 on each of these problems. For comparison, we also plot the wall-clock
time of PARPACK with and without shift-and-invert. As in the previous experiments,
Algorithm 3.1 maintains high parallel efficiency up to 512 MPI processes and, pro-
vided enough parallel resources, outperforms PARPACK. Additionally, Algorithm 3.1 is
more memory efficient than shift-and-invert PARPACK as Np increases; Table 5.7 lists
the peak memory consumption for both algorithms for the maximum Np used in each
group of tests for each problem. Finally, Table 5.8 lists the maximum error in the
eigenvalues returned by Algorithm 3.1 for N = 4 and N = 8.

6. Conclusion. We presented a distributed-memory Rayleigh--Ritz projection
algorithm to compute a few of the smallest eigenvalues and associated eigenvectors
of a sparse, symmetric matrix pencil. The algorithm introduces embarrassing par-
allelism by recasting the problem as one of approximating univariate, vector-valued
functions via Chebyshev approximation. The computational work associated with
each Chebyshev node can be assigned to a different group of processors, and we de-
scribed a scheme for doing this using a 2D grid of MPI processes. We discussed several
theoretical aspects and implementation details, including how to orthonormalize the
Rayleigh--Ritz basis and form the projected eigenvalue problem. Our experiments
demonstrated that the proposed algorithm attains good parallel efficiency, superior
to PARPACK.

While we have focused on computing the smallest eigenvalues of (A,M), our
technique can be extended to find eigenvalues in other regions of the spectrum. We
leave the details of this extension as a matter for future work. Additionally, we plan to
develop a version of this algorithm based on generalized spectral Schur complements,
in which the matrix Yj is formed by computing a few eigenvectors of the pencil\bigl(
S(\chi j), - S\prime (\chi j)

\bigr)
instead of S(\chi j) alone. This may allow one to reduce the value of N ,

7The best wall-clock time of PARPACK for the 3D mesh problem was achieved for Np = 128.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S348 T. XU, A. AUSTIN, V. KALANTZIS, AND Y. SAAD

16 32 64 128

60

80

100

120

140

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of qa8fk/qa8fm

16 32 64 128

100.5

101

101.5

Number of MPI processes

T
im

e
(s

)

Time of qa8fk/qa8fm

128 256 512

60

80

100

120

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of tmt sym

128 256 512
101

102

Number of MPI processes
T

im
e

(s
)

Time of tmt sym

128 256 512

60

80

100

120

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of af shell3

128 256 512
101

102

Number of MPI processes

T
im

e
(s

)

Time of af shell3

128 256 512

60

80

100

120

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of ecology2

128 256 512

101.5

102

102.5

Number of MPI processes

T
im

e
(s

)

Time of ecology2

128 256 512

60

80

100

120

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of thermal2

lanczos orthogonalization other total

128 256 512

101.5

102

102.5

Number of MPI processes

T
im

e
(s

)

Time of thermal2

SchurCheb(8) SchurCheb(4)
arpack arpack-shift-invert

Fig. 5.9. Left: parallel efficiency of Algorithm 3.1 with n\mathrm{e}\mathrm{v} = 100 and pc = N = 8. Right:
wall-clock time comparison between Algorithm 3.1 with N = 4 and N = 8 and PARPACK with and
without shift-and-invert. The number of MPI processes ranges from Np = 16 to Np = 512.

permitting the use of more parallel resources within each column MPI communicator.
We also plan on extending the implementation of our current algorithm so that the
computations local to each MPI process are performed using graphics processing units.
Finally, we plan on applying our software to problems from real-world applications,
e.g., frequency response analysis.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION S349

Table 5.7
Peak memory consumption of Algorithm 3.1 and of PARPACK with shift-and-invert for the SuiteS-

parse problems.

qa8 af shell3 tmt sym ecology2 thermal2

Np = 128 Np = 512 Np = 512 Np = 512 Np = 512

SchurCheb(4) 0.7 GB 5.9 GB 6.7 GB 8.9 GB 11.2 GB

SchurCheb(8) 1.4 GB 11.9 GB 13.2 GB 17.5 GB 22.2 GB

PARPACK 21.7 GB 47.7 GB 50.8 GB 58.7 GB 56.5 GB

Table 5.8
Maximum relative error in the eigenvalues returned by Algorithm 3.1 for the SuiteSparse prob-

lems.

qa8 af shell3 tmt sym ecology2 thermal2

SchurCheb(4) 3.2\times 10 - 4 2.1\times 10 - 4 1.6\times 10 - 4 1.8\times 10 - 5 9.1\times 10 - 5

SchurCheb(8) 1.0\times 10 - 8 3.8\times 10 - 10 6.5\times 10 - 8 8.9\times 10 - 9 1.9\times 10 - 10

Acknowledgments. The authors acknowledge the Minnesota Supercomputing
Institute (MSI) at the University of Minnesota for providing resources that contrib-
uted to the research results reported within this paper (http://www.msi.umn.edu).
They also thank the referees for several suggestions that have improved the presenta-
tion of this article.

REFERENCES

[1] P. R. Amestoy, I. S. Duff, J.-Y. L'Excellent, and J. Koster, MUMPS: A general purpose
distributed memory sparse solver , in International Workshop on Applied Parallel Comput-
ing, Springer, Berlin, Heidelberg, 2000, pp. 121--130, https://doi.org/10.1007/3-540-70734-
4 16.

[2] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users' Guide,
SIAM, Philadelphia, 1999, https://doi.org/10.1137/1.9780898719604.

[3] C. A. Beattie, M. Embree, and D. C. Sorensen, Convergence of polynomial restart
Krylov methods for eigenvalue computations, SIAM Rev., 47 (2005), pp. 492--515,
https://doi.org/10.1137/S0036144503433077.

[4] C. Bekas and A. Curioni, Very large scale wavefunction orthogonalization in density func-
tional theory electronic structure calculations, Comput. Phys. Commun., 181 (2010), pp.
1057--1068, https://doi.org/10.1016/j.cpc.2010.02.013.

[5] C. Bekas and Y. Saad, Computation of smallest eigenvalues using spectral Schur comple-
ments, SIAM J. Sci. Comput., 27 (2005), pp. 458--481, https://doi.org/10.1137/040603528.

[6] J. K. Bennighof and R. B. Lehoucq, An automated multilevel substructuring method for
eigenspace computation in linear elastodynamics, SIAM J. Sci. Comput., 25 (2004), pp.
2084--2106, https://doi.org/10.1137/S1064827502400650.

[7] J. R. Bunch and L. Kaufman, Some stable methods for calculating inertia and solving sym-
metric linear systems, Math. Comp., (1977), pp. 163--179, https://doi.org/10.1090/S0025-
5718-1977-0428694-0.

[8] D. Calvetti, L. Reichel, and D. C. Sorensen, An implicitly restarted Lanczos method for
large symmetric eigenvalue problems, Electron. Trans. Numer. Anal., 2 (1994), pp. 1--21.

[9] E. Carson, K. Lund, M. Rozlo\v zn\'{\i}k, and S. Thomas, Block Gram-Schmidt algo-
rithms and their stability properties, Linear Algebra Appl., 638 (2022), pp. 150--195,
https://doi.org/10.1016/j.laa.2021.12.017.

[10] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans.
Math. Software, 38 (2011), 1, https://doi.org/10.1145/2049662.2049663.

[11] R. D. Falgout and U. M. Yang, hypre: A library of high performance preconditioners, in
International Conference on Computational Science, Springer, Berlin, Heidelberg, 2002,
pp. 632--641, https://doi.org/10.1007/3-540-47789-6 66.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

http://www.msi.umn.edu
https://doi.org/10.1007/3-540-70734-4_16
https://doi.org/10.1007/3-540-70734-4_16
https://doi.org/10.1137/1.9780898719604
https://doi.org/10.1137/S0036144503433077
https://doi.org/10.1016/j.cpc.2010.02.013
https://doi.org/10.1137/040603528
https://doi.org/10.1137/S1064827502400650
https://doi.org/10.1090/S0025-5718-1977-0428694-0
https://doi.org/10.1090/S0025-5718-1977-0428694-0
https://doi.org/10.1016/j.laa.2021.12.017
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/3-540-47789-6_66

S350 T. XU, A. AUSTIN, V. KALANTZIS, AND Y. SAAD

[12] W. Gao, X. S. Li, C. Yang, and Z. Bai, An implementation and evaluation of the AMLS
method for sparse eigenvalue problems, ACM Trans. Math. Software, 34 (2008), 20,
https://doi.org/10.1145/1377596.1377600.

[13] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the
Message-Passing Interface, MIT Press, Cambridge, MA, 1999.

[14] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A scalable and flexible toolkit for the
solution of eigenvalue problems, ACM Trans. Math. Software, 31 (2005), pp. 351--362,
https://doi.org/10.1145/1089014.1089019.

[15] W. Heylen, S. Lammens, and P. Sas, Modal Analysis Theory and Testing, KU Leuven,
Leuven, Belgium, 1997.

[16] T. Hoshi, H. Imachi, A. Kuwata, K. Kakuda, T. Fujita, and H. Matsui, Numerical aspect
of large-scale electronic state calculation for flexible device material , Jpn. J. Ind. Appl.
Math., 36 (2019), pp. 685--698, https://doi.org/10.1007/s13160-019-00358-2.

[17] V. Kalantzis, Domain Decomposition Algorithms for the Solution of Sparse Symmetric Gen-
eralized Eigenvalue Problems, Ph.D. thesis, University of Minnesota, Minneapolis, MN,
2018, https://doi.org/11299/201170.

[18] V. Kalantzis, A domain decomposition Rayleigh--Ritz algorithm for symmetric gen-
eralized eigenvalue problems, SIAM J. Sci. Comput., 42 (2020), pp. C410--C435,
https://doi.org/10.1137/19M1280004.

[19] V. Kalantzis, A spectral Newton-Schur algorithm for the solution of symmetric gener-
alized eigenvalue problems, Electron. Trans. Numer. Anal., 52 (2020), pp. 132--153,
https://doi.org/10.1553/etna vol52s132.

[20] V. Kalantzis, J. Kestyn, E. Polizzi, and Y. Saad, Domain decomposition approaches for
accelerating contour integration eigenvalue solvers for symmetric eigenvalue problems, Nu-
mer. Linear Algebra Appl., 25 (2018), e2154, https://doi.org/10.1002/nla.2154.

[21] V. Kalantzis, R. Li, and Y. Saad, Spectral Schur complement techniques for symmetric
eigenvalue problems, Electron. Trans. Numer. Anal., 45 (2016), pp. 305--329.

[22] V. Kalantzis, Y. Xi, and L. Horesh, Fast randomized non-Hermitian eigensolvers based on
rational filtering and matrix partitioning, SIAM J. Sci. Comput., 43 (2021), pp. S791--S815,
https://doi.org/10.1137/20M1349217.

[23] V. Kalantzis, Y. Xi, and Y. Saad, Beyond automated multilevel substructuring: Domain
decomposition with rational filtering, SIAM J. Sci. Comput., 40 (2018), pp. C477--C502,
https://doi.org/10.1137/17M1154527.

[24] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for par-
titioning irregular graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359--392,
https://doi.org/10.1137/S1064827595287997.

[25] G. Karypis, K. Schloegel, and V. Kumar, PARMETIS: Parallel Graph Partitioning and
Sparse Matrix Ordering Library, Technical Report TR 97-060, University of Minnesota,
Minneapolis, MN, 1997, https://doi.org/11299/215345.

[26] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.
[27] J. Kestyn, V. Kalantzis, E. Polizzi, and Y. Saad, PFEAST: A high performance sparse

eigenvalue solver using distributed-memory linear solvers, in SC'16: Proceedings of the
IEEE International Conference for High Performance Computing, Networking, Storage
and Analysis, 2016, pp. 178--189, https://doi.org/10.1109/SC.2016.15.

[28] A. V. Knyazev, M. E. Argentati, I. Lashuk, and E. E. Ovtchinnikov, Block locally optimal
preconditioned eigenvalue xolvers (BLOPEX) in hypre and PETSc, SIAM J. Sci. Comput.,
29 (2007), pp. 2224--2239, https://doi.org/10.1137/060661624.

[29] J. H. Ko and Z. Bai, High-frequency response analysis via algebraic substructuring, Internat.
J. Numer. Methods Engrg., 76 (2008), pp. 295--313, https://doi.org/10.1002/nme.2326.

[30] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users' Guide: Solution of Large
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia,
1998, https://doi.org/10.1137/1.9780898719628.

[31] R. Li, Y. Xi, L. Erlandson, and Y. Saad, The eigenvalues slicing library (EVSL): Algo-
rithms, implementation, and software, SIAM J. Sci. Comput., 41 (2019), pp. C393--C415,
https://doi.org/10.1137/18M1170935.

[32] X. S. Li and J. W. Demmel, SuperLU DIST: A scalable distributed-memory sparse direct
solver for unsymmetric linear systems, ACM Trans. Math. Software, 29 (2003), pp. 110--
140, https://doi.org/10.1145/779359.779361.

[33] S. Lui, Kron's method for symmetric eigenvalue problems, J. Comput. Appl. Math., 98 (1998),
pp. 35--48, https://doi.org/10.1016/S0377-0427(98)00110-1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1145/1377596.1377600
https://doi.org/10.1145/1089014.1089019
https://doi.org/10.1007/s13160-019-00358-2
https://doi.org/11299/201170
https://doi.org/10.1137/19M1280004
https://doi.org/10.1553/etna_vol52s132
https://doi.org/10.1002/nla.2154
https://doi.org/10.1137/20M1349217
https://doi.org/10.1137/17M1154527
https://doi.org/10.1137/S1064827595287997
https://doi.org/11299/215345
https://doi.org/10.1109/SC.2016.15
https://doi.org/10.1137/060661624
https://doi.org/10.1002/nme.2326
https://doi.org/10.1137/1.9780898719628
https://doi.org/10.1137/18M1170935
https://doi.org/10.1145/779359.779361
https://doi.org/10.1016/S0377-0427(98)00110-1

PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION S351

[34] K. J. Maschhoff and D. Sorensen, A portable implementation of ARPACK for distributed
memory parallel architectures, in Proceedings of the Copper Mountain Conference on It-
erative Methods, Vol. 1, 1996.

[35] E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B, 79
(2009), 115112, https://doi.org/10.1103/PhysRevB.79.115112.

[36] T. Sakurai, Y. Futamura, A. Imakura, and T. Imamura, Scalable eigen-analysis engine for
large-scale eigenvalue problems, in Advanced Software Technologies for Post-Peta Scale
Computing, Springer, Singapore, 2019, pp. 37--57, https://doi.org/10.1007/978-981-13-
1924-2 3.

[37] A. Stathopoulos and J. R. McCombs, PRIMME: PReconditioned Iterative MultiMethod
Eigensolver---methods and software description, ACM Trans. Math. Software, 37 (2010),
21, https://doi.org/10.1145/1731022.1731031.

[38] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, Boston, MA,
1990.

[39] Y. Su, T. Lu, and Z. Bai, 2D Eigenvalue Problems I: Existence and Number of Solutions,
preprint, https://arxiv.org/abs/1911.08109v1, 2019.

[40] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia,
2013.

[41] U. von Luxburg, A tutorial on spectral clustering, Stat. Comput., 17 (2007), pp. 395--416,
https://doi.org/10.1007/s11222-007-9033-z.

[42] D. B. Williams-Young, P. G. Beckman, and C. Yang, A shift selection strategy for parallel
shift-invert spectrum slicing in symmetric self-consistent eigenvalue computation, ACM
Trans. Math. Software, 46 (2020), 35, https://doi.org/10.1145/3409571.

[43] K. Wu and H. Simon, Thick-restart Lanczos method for large symmetric eigenvalue
problems, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 602--616, https://doi.org/
10.1137/S0895479898334605.

[44] Y. Xi, R. Li, and Y. Saad, Fast computation of spectral densities for generalized eigen-
value problems, SIAM J. Sci. Comput., 40 (2018), pp. A2749--A2773, https://doi.org/
10.1137/17M1135542.

[45] C. Yang, W. Gao, Z. Bai, X. S. Li, L.-Q. Lee, P. Husbands, and E. Ng, An algebraic
substructuring method for large-scale eigenvalue calculation, SIAM J. Sci. Comput., 27
(2005), pp. 873--892, https://doi.org/10.1137/040613767.

[46] H. Zhang, B. Smith, M. Sternberg, and P. Zapol, SIPs: Shift-and-Invert parallel
spectral transformations, ACM Trans. Math. Software, 33 (2007), 9, https://doi.org/
10.1145/1236463.1236464.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1103/PhysRevB.79.115112
https://doi.org/10.1007/978-981-13-1924-2_3
https://doi.org/10.1007/978-981-13-1924-2_3
https://doi.org/10.1145/1731022.1731031
https://arxiv.org/abs/1911.08109v1
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1145/3409571
https://doi.org/10.1137/S0895479898334605
https://doi.org/10.1137/S0895479898334605
https://doi.org/10.1137/17M1135542
https://doi.org/10.1137/17M1135542
https://doi.org/10.1137/040613767
https://doi.org/10.1145/1236463.1236464
https://doi.org/10.1145/1236463.1236464

	Introduction
	A new parallel algorithm
	Notation and roadmap

	Domain decomposition variable ordering
	A parallel algorithm based on Chebyshev approximation
	Spectral Schur complements
	Chebyshev approximation of eigenvector components
	A parallel algorithm
	
Practical details

	A distributed-memory implementation
	Data distribution on 2D MPI grids
	Computation of <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	Yj?></0:tex-math></0:inline-formula> via <0:monospace >PARPACK</0:monospace>
	Orthonormalization of the Rayleigh–Ritz basis
	Formation and solution of the projected eigenvalue problem

	Numerical experiments
	Numerical illustration
	Distributed-memory performance
	Eigenvalue problems from finite difference discretizations
	Eigenvalue problems from finite element discretizations
	Eigenvalue problems from the SuiteSparse collection

	Conclusion
	Acknowledgments
	References

