
Some New Results on and
Applications of Interpolation in

Numerical Computation

Anthony P. Austin

Balliol College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity Term, 2016

To my family.

Abstract

This thesis discusses several topics related to interpolation and how it is used in numerical
analysis. It begins with an overview of the aspects of interpolation theory that are
relevant to the discussion at hand before presenting three new contributions to the field.

The first new result is a detailed error analysis of the barycentric formula for trigonomet-
ric interpolation in equally-spaced points. We show that, unlike the barycentric formula
for polynomial interpolation in Chebyshev points (and contrary to the main view in the
literature), this formula is not always stable. We demonstrate how to correct this insta-
bility via a rewriting of the formula and establish the forward stability of the resulting
algorithm.

Second, we consider the problem of trigonometric interpolation in grids that are per-
turbations of equally-spaced grids in which each point is allowed to move by at most
a fixed fraction of the grid spacing. We prove that the Lebesgue constant for these
grids grows at a rate that is at most algebraic in the number of points, thus answering
questions put forth by Trefethen and Weideman [135] about the robustness of numerical
methods based on trigonometric interpolation in points that are uniformly distributed
but not equally-spaced. We use this bound to derive theorems about the convergence
rate of trigonometric interpolation in these grids and also discuss the related question
of quadrature. Specifically, we prove that if a function has ν ≥ 1 derivatives, the νth
of which is Hölder continuous (with a Hölder exponent that depends on the size of the
maximum allowable perturbation), then the interpolants converge uniformly to the func-
tion at an algebraic rate; larger values of ν lead to more rapid convergence. A similar
statement holds for the corresponding quadrature rule. We also consider what analogue,
if any, there is for trigonometric interpolation of the famous 1/4 theorem of Kadec from
sampling theory that restricts the size of the perturbations one can make to the integers
and still be guaranteed to have a set of stable sampling for the Paley–Wiener space. We
present numerical evidence suggesting that in the discrete case, the 1/4 threshold takes
the form of a threshold for the boundedness of a “2-norm Lebesgue constant” and does
not appear to have much significance in practice.

We believe that these are the first results regarding this problem to appear in the litera-
ture. While we do not believe the results we establish are the best possible quantitatively,
they do (rigorously) capture the main features of trigonometric interpolation in pertur-
bations of equally-spaced grids. We make several conjectures as to what the optimal
results may be, backed by extensive numerical results.

Finally, we consider a new application of interpolation to numerical linear algebra. We
show that recently developed methods for computing the eigenvalues of a matrix by dis-
cretizing contour integrals of its resolvent are equivalent to computing a rational inter-
polant to the resolvent and finding its poles. Using this observation as the foundation, we
develop a method for computing the eigenvalues of real symmetric matrices that enjoys
the same advantages as contour integral methods with respect to parallelism but employs
only real arithmetic, thereby cutting the computational cost and storage requirements
in half.

Acknowledgements

First, I would like to thank my doctoral supervisor, Nick Trefethen, for his guidance over the last
four years. His abilities to see both the big and small pictures simultaneously and to lucidly explain
sophisticated concepts are traits to which I can only aspire. It has been an honor to have been
allowed to carry out this work under his tutelage. Obviously, his view of numerical analysis has
greatly influenced my own, and I am sure the reader will see that influence on every page.

Second, I thank my examiners, Stefan Güttel and Andrew Thompson, for their most careful read-
ing of this thesis. Their comments resulted in many improvements to the text, and the presentation
has benefited at all levels from their insight.

While in Oxford, I have had the privilege and pleasure of working with many truly excellent col-
leagues. Among these, I acknowledge in particular Kuan Xu, together in collaboration with whom
part of this work was completed. I thank my officemates Hrothgar, Mohsin Javed, Hadrien Mon-
tanelli, and Alex Townsend for countless hours of interesting discussions on topics both mathematical
and otherwise. I also thank the rest of my fellow Chebfun team members from over the years—Jared
Aurentz, Ásgeir Birkisson, Toby Driscoll, Nick Hale, Behnam Hashemi, Georges Klein, Olivier Séte,
and Richard (Mikael) Slevinsky—for providing a highly stimulating intellectual environment. It has
been truly wonderful to work with such great people. I can only hope that I have been able to be
as good a colleague to them as they have been to me.

Other individuals from Oxford I would like to thank include my checkpoint examiners Coralia
Cartis, Patrick Farrell, Ian Sobey, and Andy Wathen, who provided feedback on portions of this
work in its early stages, and my college advisor, Frances Kirwan. I also thank the administrator for
the numerical analysis group, Helen Taylor, and her predecessor, Lotti Ekert, for the many times
they have assisted me over the years.

There are many individuals from outside Oxford with whom I have had the pleasure of interacting
during my time here and who have helped shape my development as a researcher. Among these, I
thank in particular Peter Kravanja, Karl Meerbergen, Yuji Nakatsukasa, Françoise Tisseur, Tetsuya
Sakurai, André Weideman, and Grady Wright. I especially thank Mark Embree, who has been an
important mentor to me since my days as an undergraduate. It was on his advice that I applied to
study at Oxford and at Cambridge prior to that. Were it not for his influence, my path through
graduate school would have been a very different one indeed.

The bulk of this work was funded by the European Research Council, and I thank them for
making it possible. I also owe an enormous debt of gratitude to the Marshall Aid Commemoration
Commission—and, by extension, the people of the United Kingdom—for giving me the chance to
study on this side of the Atlantic in the first place. It is a debt I will never be able to truly repay.

I thank my good friend Patrick Wedgeworth and my friend and long-time mentor Peter Billing-
ham from Jesuit Dallas for supporting me from home. Many times, they have made the roughly
4,750 mile distance that has separated us seem not quite so far.

Finally, I thank my family—my mother, Suzanne, my father, Anthony R., and my brother,
James—for being an unconditional source of strength and encouragement for me not only for the
five years that I have been overseas but throughout my life to date. I never would have made it this
far without their love and support.

Anthony P. Austin
August 15, 2016

Contents

1 Basic Interpolation Theory and Practice 1
1.1 Introduction . 1
1.2 Polynomial Interpolation . 2

1.2.1 Existence and Uniqueness . 2
1.2.2 Lagrange Form, Barycentric Representation 3
1.2.3 Interpolation on the Unit Circle, Connection to Cauchy Integrals 5
1.2.4 Interpolation on the Unit Interval, Chebyshev Points 6
1.2.5 Interpolation and Approximation . 9
1.2.6 Convergence of Chebyshev Interpolation . 13
1.2.7 Distribution of Interpolation Points, The Runge Phenomenon 15
1.2.8 Lebesgue Constants . 19

1.3 Trigonometric Interpolation . 22
1.3.1 Relation to Polynomial Interpolation . 22
1.3.2 Barycentric Representation . 24
1.3.3 Lebesgue Constants . 26
1.3.4 Even-Length Interpolants . 27

1.4 Rational Interpolation . 28
1.4.1 The Linearized Problem . 29
1.4.2 Solving the Linearized Problem . 29
1.4.3 Spurious Poles, Robust Rational Interpolation 32

1.5 Chebfun . 34

2 Numerical Stability of the Barycentric Formula for Trigonometric Interpolation 37
2.1 Introduction . 37
2.2 Instability of the Second Formula . 38
2.3 A Stable Algorithm . 40
2.4 Analysis of the Proposed Algorithm . 43

2.4.1 Condition Number . 44
2.4.2 Floating-Point Model . 44
2.4.3 Technical Lemmas . 45
2.4.4 Stability Analysis . 46

2.5 Interpolation on Intervals Other than [0, 2π] . 51
2.6 Interpolation in an Even Number of Points . 54

3 Trigonometric Interpolation in Non-Equispaced Points I 57
3.1 Introduction . 57
3.2 Theoretical Background . 61

3.2.1 Bases in Hilbert Space . 61
3.2.2 Non-Harmonic Fourier Series and Kadec’s 1/4 Theorem 63
3.2.3 The Paley–Wiener Theorem . 65
3.2.4 Interpolation in PWπ . 66
3.2.5 Relationship with Trigonometric Interpolation 67

i

3.3 Trigonometric Interpolation and Approximation on Perturbed Equispaced Grids . . 69
3.3.1 The “Worst” Grid . 70
3.3.2 Asymptotic Behavior of the Lebesgue Constant 72
3.3.3 Approximation Theorems . 77

3.4 2-Norm Lebesgue Constants and Kadec’s 1/4 Theorem 78
3.4.1 The 2-Norm Lebesgue Constant . 79
3.4.2 The 2-Norm “Worst” Grid . 80
3.4.3 Asymptotic Behavior of the 2-Norm Lebesgue Constant 80

3.5 Quadrature via Trigonometric Interpolation . 82
3.5.1 Results Derived from Approximation Theorems 84
3.5.2 Sums of Quadrature Weights . 85

4 Trigonometric Interpolation in Non-Equispaced Points II 88

5 Rational Interpolation and Eigenvalue Computation 108
5.1 Introduction . 108
5.2 Finding Poles of the Resolvent . 109

5.2.1 The Sakurai–Sugiura method . 110
5.3 Rational Interpolation . 111

5.3.1 Rational Interpolation on a Real Interval . 112
5.4 Instability of Rational Interpolation for Finding Eigenvalues 113
5.5 Rayleigh–Ritz Reformulation Using Rational Filters 114

5.5.1 The SS-RR Method . 114
5.5.2 Contour Integrals and Filter Functions . 115
5.5.3 Filters Derived from Rational Interpolation 115
5.5.4 Rayleigh–Ritz for the Chebyshev Interpolation Filter 119
5.5.5 Contour Integral Derivation of the Chebyshev Filter 120
5.5.6 General Rational Filters and Remarks on the Literature 121

5.6 Practical Considerations . 123
5.6.1 Eigenvalues Near Filter Poles . 123
5.6.2 Determining the Subspace Size . 125
5.6.3 Block Methods . 126
5.6.4 Outer Iteration . 127

5.7 Summary of the Proposed Algorithm . 127
5.8 Numerical Examples . 128

6 Conclusion 131

Bibliography 132

ii

Chapter 1

Basic Interpolation Theory and
Practice

This thesis is about interpolation and its uses in numerical computation. Before presenting our new

contributions to the field in Chapters 2–5, here we set the stage for our discussion by reviewing

the basic notions from interpolation theory and practice that we will need throughout. None of the

material in this chapter is new; much of it can be found in standard textbooks. Our views and

presentation have been particularly strongly influenced by [133] and the article [6].

1.1 Introduction

Interpolation is the name given to the general task of finding a function of a given form such that it

and/or one or more of its derivatives assumes given values at a prescribed set of points. Classically

developed as a technique for “filling in the blanks” in tables of numerical data, it is perhaps the most

basic tool for approximating functions in all of mathematics. Yet it is so subtle and intricate—and

its applications so wide-ranging—that it has spawned many thousands of pages of mathematical

research, pure and applied, in the roughly four centuries that it has been a subject of study.1

As the imprecision of the definition just given might suggest, there are many problems that

one can consider that fall under the heading of interpolation. Problems are typically classified

first according to the functional form that the interpolant is required to take. Thus, one speaks of

polynomial interpolation when the function to be found is a polynomial, piecewise linear interpolation

when it is piecewise linear, and so on. We will not make any attempt to provide a unified treatment

that handles all of the possibilities. Instead, we will immediately narrow our focus to the cases

with which we will be most concerned in the later chapters, namely, polynomial, trigonometric, and

rational interpolation in a single (complex) variable. As these themselves are each deep subjects

1Of course, we do not claim that interpolation was invented 400 years ago. To the contrary, basic interpolation
schemes were known even to the ancients. For a brief account of the early history of this subject, we refer the reader
to [82] and to the papers cited therein.

1

that possess book-length treatments of their own, we will only hit the highlights, leaving the reader

to look up the details elsewhere as he or she desires.

1.2 Polynomial Interpolation

Polynomial interpolation is the most basic type of interpolation that one can consider. We denote the

space of all polynomials of degree at most N by PN . The usual form of the polynomial interpolation

problem reads:2

Given K distinct interpolation points z0, . . . , zK−1 ∈ C and K corresponding values

f0, . . . , fK−1 ∈ C, find a polynomial p ∈ PK−1 such that p(zk) = fk for each k.

A word about notation: throughout this thesis, the variable K will almost exclusively be reserved

for the number of points involved in the interpolation problem under consideration, while N will

similarly almost always represent the degree of the interpolant.3

1.2.1 Existence and Uniqueness

The polynomial p always exists and is unique. The classic way to prove this is to represent p in

the monomial basis, writing p(z) =
∑K−1

k=0 ckz
k, and then observe that the interpolation conditions

yield the following linear system for the coefficients c0, . . . , cK−1:
1 z0 · · · zK−1

0

1 z1 · · · zK−1
1

...
...

...
1 zK−1 · · · zK−1

K−1




c0
c1
...

cK−1

 =


f0
f1
...

fK−1

 . (1.1)

The matrix on the left-hand side of this equation is called the Vandermonde matrix for the points

z0, . . . , zK−1. Expanding by minors down the last column and using an induction argument, one can

show that the determinant of this matrix is
∏

i<j(zj−zi). Since the zk are distinct, the determinant

is nonzero, and the result follows.

One can use (1.1) as the basis for a numerical algorithm for finding p: simply solve the Vander-

monde system for the coefficients ck. This turns out to be a bad idea, as Vandermonde matrices

are notoriously poorly conditioned for general sets of interpolation points.4 Thus, interpolation

algorithms that rely on them will typically be numerically unstable.
2One can also consider versions of the problem in which one or more of the derivatives of the polynomial to be

found are specified at the interpolation points. If the values of both the polynomial and its derivative are given at
all the points, one obtains a Hermite interpolation problem. If the values of higher-order derivatives are given or if
the number of derivatives specified varies from point to point (possibly with some intermediate derivatives omitted,
e.g., the values of the first and third derivatives are specified at a point but not that of the second), the problem is
called a Hermite–Birkhoff interpolation problem. As these variants will not figure into our later discussions, we will
not consider them here.

3Thus, for the polynomial interpolation problem, N and K are related by K = N + 1, while for the trigonometric
interpolation problem (see Section 1.3), we have K = 2N + 1. The major exception to this convention occurs in
Chapter 5, where N is used for the dimension of a matrix.

4An important exception to this is the case of Vandermonde matrices for points that are equally spaced on the
unit circle; see Section 1.2.3.

2

1.2.2 Lagrange Form, Barycentric Representation

A different way to represent p that is much better numerically and often convenient theoretically is

as follows. For 0 ≤ k ≤ K − 1, define the polynomial `k(z) by

`k(z) =
K−1∏
j=0
j 6=k

z − zj

zk − zj
. (1.2)

It is easily checked that `k ∈ PK−1, that `k(zj) = 0 if j 6= k, and that `k(zk) = 1. Thus, we have

p(z) =
K−1∑
k=0

fk`k(z). (1.3)

This representation of p is known as the Lagrange form5 of p, and the polynomials `k are termed

the Lagrange basis polynomials (or, sometimes, the cardinal polynomials) for the points zk.

By representing p in the Lagrange basis instead of the monomial basis, we avoid the pitfalls

of Vandermonde matrices mentioned above; however, this new representation comes with a cost.

Evaluating the monomial representation of p requires O(K) operations. Evaluating (1.3), on the

other hand, takes O(K2) operations, since O(K) operations are needed to evaluate each of the K

basis functions `k.

We can get around this problem by rewriting (1.3) in a clever way. Define `(z) = (z− z0) · · · (z−

zK−1). This polynomial is called the node polynomial for the points zk. Straightforward calculations

show that

`k(z) =
`(z)

`′(zk)(z − zk)
.

Letting νk = 1/`′(zk) for each k, it follows that (1.3) is equivalent to

p(z) = `(z)
K−1∑
k=0

νk

z − zk
fk, (1.4)

and this requires only O(K) operations to evaluate for each z once the values νk have been computed.

The formula (1.4) is known as the first barycentric formula for p. The values νk are called the

barycentric weights for the points zk and are given by the formula

ν−1
k =

K−1∏
j=0
j 6=k

(zk − zj). (1.5)

For an arbitrary grid, the computation of the νk requires O(K2) operations; however, for certain

special and commonly used grids, there are closed-form expressions for the νk that require little or

no work to evaluate.

One disadvantage of (1.4) is that it is prone to overflow and underflow when K is large. The

culprits are the factor `(z) that appears in front and the weights νk, both of which can grow or decay
5In spite of this nomenclature, Lagrange was not the first to discover this representation of the interpolating

polynomial; it appears earlier in a paper by Waring [145].

3

exponentially as K →∞. Implementations of (1.4) must be carefully written to guard against this

issue.

Alternatively, we can rewrite p in yet another form that circumvents this problem. Taking

f0 = · · · = fK−1 = 1 in (1.4) yields the identity

1 = `(z)
K−1∑
k=0

νk

z − zk
.

Dividing (1.4) by this identity on both sides and cancelling the common `(z) factors then gives

p(z) =

K−1∑
k=0

νk

z − zk
fk

K−1∑
k=0

νk

z − zk

. (1.6)

This formula is called the second barycentric formula for p, and it lacks the troublesome `(z) factor.

Moreover, one can pull out a constant factor common to all the νk and cancel it out of the quotient

as well, counteracting any common exponential dependence of the νk on K. Thus, (1.6) is much less

susceptible to overflow and underflow than (1.4).

The last remaining element needed to ensure the suitability of (1.4) and (1.6) for computation

is an assessment of their numerical stability. At first glance, the situation appears dangerous due to

the poles in the summands: when z is close to zk, 1/(z − zk) will be large, and any rounding error

incurred in the subtraction z − zk will be amplified. It is reasonable to expect that this will result

in a loss of accuracy when evaluating p near the interpolation points.

In fact, this does not happen. Intuitively, for (1.6), the reason is that while the errors in comput-

ing 1/(z−zk) can indeed be large, the error made is the same in the numerator and the denominator

and therefore cancels out when the quotient is taken. Something similar happens in (1.4) when one

multiplies by `(z). Higham provided rigorous justification for these observations in [58],6 where he

proved that, ignoring overflow and underflow, (1.4) is unconditionally backward stable and (1.6) is

forward stable provided that the Lebesgue constant (see Section 1.2.8) for the interpolation problem

is not too large. More recently, Mascarenhas has shown that when the interpolation points are

second-kind Chebyshev points (see Section 1.2.4) and the evaluation point lies in [−1, 1], (1.6) is

actually also backward stable, provided that additional care is taken to evaluate the sums in a way

that avoids cancellation [79].7

The name “barycentric formula” seemingly originates with [33] and comes from the fact that

(1.6) resembles the formula from physics for the center of mass of a system of particles. The “first”

6There is also an earlier analysis of (1.4) due to Rack and Reimer [106] that reaches weaker conclusions than
Higham’s.

7If the evaluation point lies elsewhere, then (1.6) is not backward stable, though the forward error analysis given
by Higham still applies. If the evaluation point is far from [−1, 1], the forward error bound can be large. For further
discussions, see [146].

4

and “second” terminology used to distinguish (1.4) from (1.6) is due to Rutishauser [116]. In the

theoretical literature, the first formula (1.4) has been known for a long time; a version of it can

be found in the early works of Jacobi [65]. The application of these formulas to numerical work is

somewhat more recent; the earliest reference appears to be [131]. A particularly important figure

in the development of these formulas is Salzer [124], who studied both them and their counterparts

for trigonometric interpolation (see Section 1.3.2) with computation in mind. These formulas have

enjoyed a boost in popularity following the publication of the article [14] by Berrut and Trefethen,

to which we refer the reader for further discussions and historical notes.

1.2.3 Interpolation on the Unit Circle, Connection to Cauchy Integrals

Traditionally, polynomial interpolation is studied in the context of the unit interval [−1, 1]. While

we will consider [−1, 1] further below, it is our opinion that the unit circle T is in some sense even

more fundamental as an interpolation domain, so we will discuss it first.

When interpolating on the circle, it is natural to take the points zk to be equally spaced, and

the most basic choice for such points is zk = ωk, where ω0, . . . , ωK−1 are the Kth roots of unity:

ωk = e2πi k
K , 0 ≤ k ≤ K − 1.

The node polynomial for these points is `(z) = zK − 1, and it is easy to show that the barycentric

weight for ωk is νk = ωk/K. Thus, (1.4) becomes

p(z) =
zK − 1
K

K−1∑
k=0

ωk

z − ωk
fk, (1.7)

while (1.6) simplifies to

p(z) =

K−1∑
k=0

ωk

z − ωk
fk

K−1∑
k=0

ωk

z − ωk

.

Alternatively, interpolation in the roots of unity is one of the rare cases in which representing p

in the monomial basis as suggested in Section 1.2.1 is a good idea. With zk = ωk, the Vandermonde

matrix in (1.1) has orthogonal columns, all of which have the same norm of
√
K. It is therefore a

scaled unitary matrix and hence perfectly well-conditioned. Moreover, it can be efficiently inverted

in O(K logK) operations using the fast Fourier transform.

There is a remarkable connection between polynomial interpolation in the roots of unity and

discretized Cauchy integrals, which we now outline. Denote the open unit disc in C by D and its

closure by D. If f is holomorphic in D, then Cauchy’s integral formula [1] tells us that

f(z) =
1

2πi

∫
T

f(ζ)
ζ − z

dζ (1.8)

5

whenever z ∈ D. One can therefore approximate f on D by discretizing the integral on the right-

hand side of (1.8) using a quadrature rule. The natural quadrature rule to use in this case is the

trapezoid rule, which has as its nodes the Kth roots of unity ωk with corresponding quadrature

weights8 ωk/K. Since f is holomorphic, this rule converges geometrically as K → ∞ [135], which

makes it a good choice for approximating (1.8) numerically. Using this rule, we obtain

f(z) ≈ 1
K

K−1∑
k=0

ωk

ωk − z
f(ωk), (1.9)

which is the same as (1.7) with fk = f(ωk), divided by 1− zK . For z = 0, (1.7) and (1.9) are exactly

the same.

Thus, approximating f on the unit disc by its polynomial interpolant in the roots of unity and

by the trapezoid rule discretization of (1.8) are two very closely related operations. The difference

between them arises because the integral in (1.8) vanishes for z outside of D, and the discretization

(1.9) has to reflect this. It accomplishes this by multiplying the polynomial interpolant by a “cage”

of poles at the roots of unity—the factor 1/(1− zK)—that acts to isolate the unit disc from the rest

of the complex plane, a behavior that may or may not be desirable depending on one’s application.

These concepts will figure prominently in Chapter 5 when we discuss an application of rational

interpolation to finding the eigenvalues of large matrices. Further discussion of the relationship

between polynomial interpolation and discretized Cauchy integrals with a particular emphasis on

algorithms founded on each can be found in [6].

1.2.4 Interpolation on the Unit Interval, Chebyshev Points

For the remainder of our discussion of polynomial interpolation, we will mostly focus on the impor-

tant case of polynomial interpolation in points in the unit interval [−1, 1]. To emphasize that we are

working on a real interval, we will use the variables x and xk in place of z and zk for the evaluation

point and interpolation points, respectively.

First, we observe that we can associate with every polynomial interpolation problem on [−1, 1]

a certain polynomial interpolation problem on the unit circle. This is easiest to see by representing

the interpolant on the interval in terms of the Chebyshev polynomials of the first kind, denoted Tk,

which are defined by T0(x) = 1, T1(x) = x, and

Tk+1(x) = 2xTk(x)− Tk−1(x), k ≥ 1. (1.10)

Alternatively, one has the following explicit representation, valid for x ∈ [−1, 1]:

Tk(x) = cos
(
k arccos(x)

)
. (1.11)

8These quadrature weights contain the 1/(2πi) constant factor that appears in front of the integral, i.e., they give
a method for approximating 1

2πi

R
T g(z) dz, not

R
T g(z) dz.

6

For more about these polynomials and their many applications, see [81] and [112].

Since Tk is a polynomial of degree exactly k for each k, the set {T0, . . . , TK−1} is a basis for

PK−1, and we can write our interpolant in the form

p(x) =
K−1∑
k=0

ckTk(x) (1.12)

for some coefficients c0, . . . , cK−1 ∈ C. The crucial fact that we need to connect [−1, 1] to the unit

circle is that for x ∈ [−1, 1], Tk(x) = Re zk, where z = x ± i
√

1− x2 ∈ T. This is easy to see for

k = 0 and k = 1. For larger k, it follows from the fact that z = 1/z for z ∈ T together with the

easily verified identity

zk+1 + z−(k+1)

2
= 2

z + z−1

2
zk + z−k

2
− zk−1 + z−(k−1)

2
,

which shows that, as a function of x, Re(zk) satisfies the same recurrence (1.10) as Tk(x). Hence,

in terms of the variable z, we can write

p(x) =
K−1∑
k=0

ck
zk + z−k

2
.

Rewriting this to better emphasize its dependence on z, let

P (z) =
K−1∑

k=−(K−1)

akz
k,

where a0 = c0 and ak = c|k|/2 for k 6= 0. The function P is a Laurent polynomial in z of degree

K−1 (i.e., a linear combination of z−(K−1), . . . , zK−1), and P (z) = p(x), where z ∈ T and x = Re z.

Thus, if p interpolates the data f0, . . . , fK−1 at the points x0, . . . , xK−1 ∈ [−1, 1], we have that P

interpolates fk at the points zk and zk, where zk = xk + i
√

1− x2
k for each k. Hence, the polynomial

q(z) = zK−1P (z) ∈ P2K−2 interpolates the data zK−1
k fk and zK−1

k fk at the points zk and zk,

respectively.

Thus, we have shown that polynomial interpolation in the K points xk in [−1, 1] is equivalent

to finding a polynomial q ∈ P2K−2 such that q(zk) = zK−1
k fk and q(zk) = zK−1

k fk for each k.

The interpolation points for this problem are conjugate-symmetric, and their real parts are the

interpolation points xk. Note that this is not quite a polynomial interpolation problem of the

general form laid out at the beginning of this chapter. The reason is that the degree of q is 2K − 2,

while the number of interpolation conditions varies depending on whether neither, one, or both of

1 and −1 occur among the xk, since if xk = ±1, then zk = xk = zk. We can handle this issue as

follows:

• If xk 6= ±1 for each k, there are 2K interpolation conditions on q. The standard interpolation

problem would choose q from P2K−1 to satisfy them; the given interpolation problem takes q

from P2K−2. The preceding developments show that the solution when q is drawn from the

7

latter exists. The uniqueness of polynomial interpolants (see Section 1.2.1) then shows that

it must also be the solution when q is drawn from the former, so in fact, the interpolation

problem can be interpreted as the standard one after all.

• If exactly one of the xk is equal to 1 or −1, then there are 2K − 1 conditions, and the

interpolation problem for q is the standard one.

• If both 1 and −1 occur among the xk, there are 2K−2 conditions, so q has one more degree of

freedom than is necessary to satisfy them. A unique solution can be specified by additionally

requiring that the leading-order and zeroth-order (constant) coefficients of q be the same. This

will lead to a Laurent polynomial P that has symmetric coefficients (i.e., the zk and z−k terms

have the same coefficient), as we had above.

In the previous section, we observed that the roots of unity are natural points for polynomial

interpolation on the unit circle. Since the roots of unity are conjugate-symmetric, it is reasonable in

light of the observations just made to ask how to choose points in [−1, 1] so that the points for the

corresponding interpolation problem on T are those roots. The most important case occurs when

the number of roots of unity is even, in which the answer to this question is given by the following:

x
(2)
k = cos

(
kπ

K − 1

)
, 0 ≤ k ≤ K − 1. (1.13)

(For K = 1, we set x(2)
0 = 0.) Since both 1 and −1 belong to this grid, the interpolation problem on

the unit circle will have 2K−2 points, and it is easily checked that the points x(2)
k are the real parts

of the 2(K − 1)th roots of unity. These points are known as the Chebyshev points of the second kind

in [−1, 1] or sometimes the Chebyshev extreme points or Chebyshev–Lobatto points, as they are the

points at which TK−1(x) assumes its extreme values on [−1, 1]. For K ≥ 2, they are also the roots

of (1 − x2)UK−2(x), where Uk is the kth Chebyshev polynomial of the second kind. As we will not

need the polynomials Uk later, we will omit their definition here.

Another important case occurs when the interpolation points on T are the (2K)th roots of unity,

shifted along the circle counterclockwise by an angle of π/(2K) so that the resulting points are still

conjugate-symmetric and equispaced on the circle but neither 1 nor −1 is among them.9 In this

case, the corresponding points on [−1, 1] are the Chebyshev points of the first kind

x
(1)
k = cos

(
(2k + 1)π

2K

)
, 0 ≤ k ≤ K − 1. (1.14)

These points are the zeros of TK(x), as is readily verified using (1.11). They are also, curiously, the

real parts of the Kth roots of i, a fact that will play a minor role later in Section 5.5.5.

One can also derive point sets in [−1, 1] corresponding to the (2K − 1)th roots of unity (a

conjugate-symmetric set of equispaced points on T that includes 1 but not −1) or the reflection
9In terms of quadrature, these points are the nodes for the midpoint rule on T, whereas the roots of unity are

those for the trapezoid rule.

8

of those roots across the imaginary axis (a set that includes −1 but not 1). These points are the

zeros of (1 + x)VK−1(x) and (1 − x)WK−1(x), where Vk and Wk are what Mason and Handscomb

call Chebyshev polynomials of the third and fourth kinds, respectively [81]. As these grids are less

important than (1.13) and (1.14) in practice, and as we shall not need them later, we will not say

anything further.

The grids (1.13) and (1.14) have a number of properties that make them well-suited to numerical

computation. Much more will be said about this in the sections that follow. For now, we just note

that their barycentric weights are known in closed form: for (1.13), they are

ν
(2)
k = (−1)k 2K−2

K − 1
, 1 ≤ k ≤ K − 2,

and half this value for k = 0 and k = K − 1, while for (1.14), they are

ν
(1)
k =

2K−1

K
TK−1

(
x

(1)
k

)
= (−1)k 2K−1

K
sin
(

(2k + 1)π
2K

)
, 0 ≤ k ≤ K − 1. (1.15)

Moreover, using the connections between interpolation in these sets of points and interpolation in

equispaced points on the unit circle just outlined, one can develop simple and efficient methods based

on the fast Fourier transform to compute the coefficients of the interpolant in the Tk basis. That

is, one can pass between the representation of the interpolant in terms of its values on either of the

grids (1.13) and (1.14) and its representation as a series of the form (1.12) using only O(K logK)

operations instead of the O(K2) operations that would be required to solve the underlying linear

system by standard methods.

As the second-kind points (1.13) are used more often in practice, we will focus on them for the

remainder of this chapter, though the first-kind points (1.14) will enter into some of our work in

Chapter 5. By and large, there is little difference between the two grids from either a theoretical or a

practical standpoint. Perhaps the most significant difference is that the second-kind points include

the endpoints ±1, while those of the first kind do not. This has some implications for practical

work, e.g., when the grids are used as the foundation for spectral collocation methods for solving

boundary value problems [28]. For a recent study focusing on the first-kind points that discusses

some of these issues in detail, see [151].

1.2.5 Interpolation and Approximation

One does not typically pursue polynomial interpolation as an end in itself. Rather, one usually

constructs an interpolant as a means of approximating or modeling some other function. The hope

is that the interpolant will be easier to analyze and/or compute with than the original function.

If the interpolant approximates the original function sufficiently well, it can be used in place of

the original function wherever the latter is required. This is the principle underlying the Chebfun

software package for numerical computing with functions [10, 29], which inspired much of the work

9

in this thesis and which we will use, often without comment, for many of our numerical illustrations.

For a brief description of Chebfun, see Section 1.5.

Thus, it is important for us to understand the extent to which polynomials and, in particular,

polynomial interpolants can be used to approximate more general functions. We will devote the

next few sections to this task. The classic setting for this discussion is uniform approximation in

the space C([−1, 1]) of continuous, complex-valued functions on [−1, 1], and we will mostly restrict

ourselves to this case. We denote the uniform (supremum) norm on C([−1, 1]) by ‖ · ‖∞.

Perhaps the most basic result concerning polynomial approximation of functions is the celebrated

Weierstrass approximation theorem,10 [133, Ch. 6, p. 43], [147] which states that polynomials are

dense in C([−1, 1]):

Theorem 1.1 (Weierstrass approximation theorem). Let f ∈ C([−1, 1]). For all ε > 0, there is a

polynomial p such that ‖f − p‖∞ < ε.

In words, any continuous function on [−1, 1] can be uniformly approximated arbitrarily well by

polynomials. This is not the end of the story, however, for while there are constructive proofs of the

Weierstrass theorem, the methods they describe are generally not favorable from a computational

standpoint. Nevertheless, the theorem gives one hope that the enterprise of approximating functions

by polynomials is at least possible.

Perhaps the next natural question to ask is how well one can approximate a function using a

polynomial of a given complexity as measured by its degree. That is, given f ∈ C([−1, 1]) and

N ≥ 0, how small can we make the error ‖f − p‖∞ if we are allowed to choose p from PN? One

can show that there is a unique p ∈ PN that minimizes this error; we call this polynomial the best

approximation to f from PN . If f is real-valued, it can be characterized by the property that f − p

assumes its maximum magnitude on [−1, 1] in at least N + 2 points, alternating in sign from one

point to the next, a result known as the equioscillation theorem [133, Ch. 10].

The error in best approximations was studied by Jackson in the early 20th century [63, 64], and

there are several results bearing his name that bound it in terms of the regularity of the function

being approximated.11 The version of his results that we present can be found in [20, Ch. 4, §6, p.

147]. In the first part of this theorem, regularity is measured using the modulus of continuity, which

is defined for f ∈ C([−1, 1]) and δ ≥ 0 by

ωf (δ) = sup
x,y∈[−1,1]
|x−y|≤δ

|f(x)− f(y)|.

That is, ωf (δ) measures the maximum amount by which f can change over an interval of width δ.

Note that as f is uniformly continuous on [−1, 1], ωf (δ) → 0 as δ → 0. We recall that f ∈ C([−1, 1])

10For an extended discussion of this theorem and its many proofs and generalizations, see [103].
11More generally, any theorem that does this is often referred to as a theorem of Jackson type.

10

is said to be Hölder continuous with exponent α, 0 < α ≤ 1 if there is a constant L such that

|f(x)− f(y)| ≤ L|x− y|α. If f is Hölder continuous with exponent α = 1, we say that f is Lipschitz

continuous, and the associated constant is called the Lipschitz constant. We denote by Ck([−1, 1])

the space of all real-valued functions with k continuous derivatives on [−1, 1].

Theorem 1.2 (Jackson’s theorems). Let f ∈ C([−1, 1]), and suppose that pN is the best approxi-

mation to f from PN .

(i) ‖f − pN‖∞ ≤ ωf

(
π/(N + 1)

)
.

(ii) If f is Hölder continuous with constant L and exponent α, 0 < α ≤ 1, then ‖f − pN‖∞ ≤

Lπα/(N + 1)α.12

(iii) If f is Lipschitz continuous with constant L, then ‖f − pN‖∞ ≤ (Lπ/2)/(N + 1).

(iv) If f ∈ Ck([−1, 1]) and N ≥ k, then ‖f−pN‖∞ ≤ (π/2)k‖f (k)‖∞/
(
(N+1)(N) · · · (N−k+2)

)
.

Thus, the smoother the function f , the more rapidly we can expect its best approximations

to converge as the degree N tends to infinity. Note that convergence is already guaranteed by

Theorem 1.1; the utility of Theorem 1.2 is that it enables us to estimate the rate at which it

happens for a given function.

In Chapter 3, we will need a Jackson-type theorem for functions with a derivative that is Hölder

continuous. Such a result can be easily deduced from those already given together with the following

theorem, which bounds the error in the best degree-N approximation to a function f by that in the

best degree-(N − k) approximation to its kth derivative.

Theorem 1.3. Let f ∈ Ck([−1, 1]), k ≥ 0, and suppose that N ≥ k. If pN and qN−k are the best

approximations to f and f (k) from PN and PN−k, respectively, then

‖f − pN‖∞ ≤ (π/2)k

(N + 1)(N) · · · (N − k + 2)
‖f (k) − qN−k‖∞.

Proof. The proof of the result for k = 1 is given in [20, p. 148]. The result for general k follows by

induction.

The result we need for our later work is:

Theorem 1.4. Let f ∈ Ck([−1, 1]), k ≥ 0, and suppose that f (k) is Hölder continuous with exponent

α, 0 < α ≤ 1, and constant L. Let N ≥ k. If pN is the best approximation to f from PN , then

‖f − pN‖∞ ≤ L(π/2)kπα

(N + 1)(N) · · · (N − k + 2)(N − k + 1)α
.

Proof. Combine part (ii) of Theorem 1.2 with Theorem 1.3.
12This theorem is not stated directly in [20, Ch. 4, §6]; however it is implicit in [20, p. 149, Problem 12] and can

be easily deduced from part (i) of the theorem.

11

Best approximations can be computed numerically using the Remez algorithm [108, 109], which

iteratively refines an initial guess for the solution until it satisfies the equioscillation characterization

mentioned above. Unfortunately, this algorithm is relatively expensive, and implementing it requires

some attention to detail for it to work robustly at high degrees.13 Polynomial interpolants are much

easier to compute. It would be nice if their approximation properties were powerful enough to

provide an acceptable alternative to best approximations for practical applications.

Thus, we turn to the study of the approximation properties specifically of polynomial inter-

polants. The first result we present is due to Marcinkiewicz [78]. Plainly, it says that for any

real-valued14 f ∈ C([−1, 1]), one can devise a scheme for interpolating it by polynomials of increas-

ing degree such that the interpolants converge uniformly to f :

Theorem 1.5 (Marcinkiewicz’s theorem). Let f ∈ C([−1, 1]) be a real-valued function. There is a

sequence {{xk,K}K−1
k=0 }∞K=1 of sets of (distinct) interpolation points in [−1, 1] such that pK converges

to f uniformly on [−1, 1] as K → ∞, where pK ∈ PK−1 is the polynomial interpolant to f in the

points {xk,K}K−1
k=0 .

One can think of this theorem as a “strengthening” of the Weierstrass approximation theorem in

that it tells us that we can always take the approximating polynomials to be interpolants, at least

in the real-valued case.

Marcinkiewicz’s theorem is excellent news, but it comes with the major drawback in that the

interpolation points whose existence it posits vary with the function f ∈ C([−1, 1]) being approxi-

mated.15 It would be much more convenient if there were a single, universal interpolation scheme

that worked for all f . Unfortunately, no such scheme exists. This fact is the content of the following

theorem, proved by Faber16 in 1914 [39]:

Theorem 1.6 (Faber’s theorem). Let {{xk,K}K−1
k=0 }∞K=1 be any sequence of sets of (distinct) inter-

polation points in [−1, 1]. There exists f ∈ C([−1, 1]) such that the interpolants pK ∈ PK−1 to f in

the points {xk,K}K−1
k=0 do not converge uniformly to f as K →∞.

In fact, the situation is even worse than this. The following considerable strengthening of Faber’s

theorem, due to Erdös and Vértesi [37, 38], shows that we can choose the function being interpolated

so that the divergence takes place on a subset of [−1, 1] that is both of full (Lebesgue) measure and

large in the sense of Baire category:17

13As a point of reference, the implementation of the Remez algorithm in Chebfun, due to Pachón [96, 98], is robust
for degrees up to several thousand.

14The reason f must be real-valued is that the proof of the result proceeds by using the equioscillation theorem
to conclude that every best approximation of degree N is also an interpolant in at least N + 1 points. It chooses the
points {xk,K}K−1

k=0 to be K points at which the best approximation of degree K − 1 interpolates f . The author is
unaware of any extension of Marcinkiewicz’s result for complex-valued continuous functions.

15See the previous footnote.
16Though we have presented them in the other order, Faber’s theorem predates Marcinkiewicz’s historically.
17Baire’s concept of category gives a way to assess the “size” of a set that is based purely on topological notions

as opposed to the more “analytical” concept of measure. A set is “small” in the sense of Baire category if it can be

12

Theorem 1.7. Let {{xk,K}K−1
k=0 }∞K=1 be any sequence of sets of (distinct) interpolation points in

[−1, 1]. There exists f ∈ C([−1, 1]) such that the interpolants pK ∈ PK−1 to f in the points

{xk,K}K−1
k=0 satisfy

lim sup
K→∞

|pK(x)| = ∞

for almost every x ∈ [−1, 1]. Moreover, the set of divergence is of the second category in [−1, 1].

This theorem and other results related to the divergence of polynomial interpolation can be found

in [128, Ch. IV].

1.2.6 Convergence of Chebyshev Interpolation

The last two theorems make the picture for interpolation seem pretty bleak; however, further study

shows that they actually reflect more the bad behavior of arbitrary continuous functions than they

do the power or lack thereof of polynomial interpolation. Most functions that arise in practice are

not merely continuous. It turns out that by requiring just a little additional regularity beyond

continuity in the functions being approximated, one can devise polynomial interpolation schemes

that work for all of them at once. Perhaps the most important of these schemes—and certainly

one that is extremely useful in numerical computation—is Chebyshev interpolation, or interpolation

in Chebyshev points. In keeping with our statements at the end of Section 1.2.4, we will consider

only interpolation in the second-kind Chebyshev points (1.13). Similar results hold for the first-kind

points (1.14).

First, we have the following theorem, which gives an extremely general criterion under which

Chebyshev interpolation is guaranteed to converge:

Theorem 1.8 (Dini–Lipschitz test). If f ∈ C([−1, 1]) satisfies limδ→0 ωf (δ) log δ = 0, then pK → f

uniformly on [−1, 1] as K →∞, where pK ∈ PK−1 is the interpolant to f in the K Chebyshev points

(1.13).

This theorem is a consequence of part (i) of Theorem 1.2 and Theorems 1.13 and 1.15, below.18

We emphasize that the criterion established in this theorem is extremely weak and that virtually

every continuous function that one encounters in practical applications will satisfy it. For instance

any function that is Hölder continuous meets the hypotheses of the theorem, and Hölder continuity is

expressed as a countable union of sets whose closures have empty interior; such sets are said to be of the first category.
Sets that do not have this property are of the second category.

In a way, the notions of “size” expressed by measure and category are unrelated: one can construct examples of
sets of full measure that are of the first category as well as sets that have measure zero but are of the second category.
Nevertheless, this is not the end of the story. For further details on the relationship between the two, we refer the
reader to [95].

18See also [20, pp. 129, 146]. The theorem stated in this reference is for Chebyshev projection—approximations
derived by truncations of expansions in Chebyshev series (see footnote 29)—not Chebyshev interpolation, but the
interpolation version is easily deduced from the arguments given by using the Lebesgue constant for interpolation (see
Section 1.2.8) in place of that for projection.

13

already a rather weak requirement. Thus, in spite of Theorems 1.6 and 1.7, Chebyshev interpolation

succeeds for an enormous class of interesting functions.

With more information about the regularity of f , we can say more about the rate at which the

convergence takes place. If f is differentiable, convergence occurs at an algebraic rate governed by

the number of derivatives that f possesses. Specifically, we have the following result, which can be

found in [133, Ch. 7, p. 53] and should be compared with part (iv) of Theorem 1.2. Recall that

a function f is absolutely continuous on an interval [a, b] if it is the indefinite (Lebesgue) integral

of a function g ∈ L1([a, b]); in this case, f ′ exists and is equal to g almost everywhere. The total

variation of a function f on [−1, 1] is the quantity V (f) = sup
∑k

j=1 |f(tj) − f(tj−1)|, where the

supremum is taken over all partitions −1 = t0 < t1 < · · · < tk = 1 of [−1, 1]. We say that f is of

bounded variation on [−1, 1] if V (f) is finite.

Theorem 1.9. Suppose that f and its derivatives through f (ν−1) are absolutely continuous on [−1, 1]

for some integer ν ≥ 0. Suppose further that the νth derivative f (ν), which exists almost everywhere

on [−1, 1], is of bounded variation. Then, for any K > ν + 1,

‖f − pK‖∞ ≤ 4V (f (ν))
πν(K − 1− ν)ν

,

where pK ∈ PK−1 is the interpolant to f in the K points (1.13).

If the function f is not merely differentiable but holomorphic on [−1, 1], the rate of convergence

is geometric. To state the relevant theorem, we need to introduce the notion of a Bernstein ellipse.

For ρ > 1, the Bernstein ellipse with parameter ρ, denoted Eρ, is the image of the open disc of

radius ρ centered at 0 in the complex plane under the Joukowski map J(z) = (z+z−1)/2. It is easily

checked that Eρ is an ellipse with foci at ±1 and that the lengths of its major and minor semiaxes

sum to ρ. As ρ → 1 from above, Eρ “collapses” to the interval [−1, 1]. A compactness argument

can be used to show that any function that is holomorphic on [−1, 1] is holomorphic in Eρ for some

ρ > 1. The following result can be found in [133, Ch. 8, p. 57].

Theorem 1.10. Suppose that f is holomorphic in Eρ for some ρ > 1 and that |f(z)| ≤ M for all

z ∈ Eρ. Then, for each K ≥ 1,

‖f − pK‖∞ ≤ 4Mρ−(K−1)

ρ− 1
,

where pK ∈ PK−1 is the interpolant to f in the K points (1.13).

We summarize the content of these theorems concisely as follows. If f has ν derivatives, with f (ν)

being of bounded variation, the interpolants pK to f in the points (1.13) converge to f uniformly as

K → ∞ at a rate of O(K−ν). If f is holomorphic on [−1, 1], then pK converges to f uniformly at

a rate of O(ρ−K), where ρ is the parameter that determines the largest Bernstein ellipse in which

f is holomorphic. These fundamental theorems form the foundation for the success of Chebyshev

interpolation in practical applications.

14

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

(a)

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

(b)

Figure 1.1: The Runge phenomenon. Interpolation of the function f(x) = 1/(1 + 25x2) on [−1, 1]
in K = 32 (a) equispaced points and (b) second-kind Chebyshev-points. The solid blue line is the
graph of f . The dashed red lines are the graphs of the interpolants, and the red dots mark the
interpolation points. The equispaced interpolant oscillates wildly near the interval endpoints, while
the Chebyshev interpolant is well-behaved.

1.2.7 Distribution of Interpolation Points, The Runge Phenomenon

It is natural to wonder if the results of the previous section apply, perhaps with minor adjustments,

to schemes other than Chebyshev interpolation. Is lack of regularity the only barrier to getting

polynomial interpolation to succeed? In other words, is polynomial interpolation in any set of

points guaranteed to converge in theory if the function is only a little smooth, e.g., if it satisfies the

criterion of Theorem 1.8 or another one that is similarly weak? What about in practice?

The answer to all of these questions is decidedly negative. In this section and the next, we will

explain why this is the case. At the same time, we will gain some insight into why Chebyshev

interpolation works so well both in theory and in practice. To do this, we will contrast it with a

scheme that famously does not work well: interpolation in equispaced points in [−1, 1].

Equispaced interpolation is so poorly behaved that is not guaranteed to converge even if the

function being interpolated is holomorphic on [−1, 1]. This fact is termed the Runge phenomenon

after Carl Runge, who developed a general theory of convergence and illustrated it by the example of

equispaced interpolation of the function f(x) = 1/(1 + 25x2) [115]. Chebyshev interpolation of this

function, on the other hand, is perfectly well-behaved. This is illustrated in Figure 1.1, which shows

the polynomial interpolants to this function inK = 32 equispaced points and second-kind Chebyshev

points (1.13). The Chebyshev interpolant matches f closely over the entire interval. The equispaced

interpolant, on the other hand, oscillates wildly near the interval endpoints. As K → ∞, the

endpoint oscillations in the equispaced interpolant become increasingly severe while the Chebyshev

interpolant converges uniformly to f at a geometric rate in accordance with Theorem 1.10.

What makes Chebyshev interpolation succeed for this function, while equispaced interpolation

15

fails? The fundamental reason has to do with how the two sets of interpolation points are asymp-

totically distributed. Equispaced points are distributed uniformly over [−1, 1], while the Chebyshev

points (of both kinds) cluster quadratically near the interval endpoints. The asymptotic distribution

of the points turns out to be the key factor in determining the convergence or lack thereof of polyno-

mial interpolation for functions that are holomorphic on [−1, 1]: convergence for all such functions is

guaranteed if and only if the interpolation points asymptotically follow the Chebyshev distribution.

Other distributions can still yield convergence on [−1, 1] for some holomorphic functions, but the

functions will need to be holomorphic in a larger region of the complex plane rather than just on

[−1, 1] itself, the precise shape and size of the region depending on the distribution.

One way to get a handle on these concepts is via the Hermite integral formula [133, Ch. 11,

p. 82], which expresses the error in a polynomial interpolant using a contour integral; indeed, this

was the technique used by Runge in his investigations. Returning momentarily to the setting of

polynomial interpolation in general points in C, we have:

Theorem 1.11 (Hermite integral formula). Suppose that f is holomorphic in a region E ⊂ C and

that z0, . . . , zK−1 are K distinct19 points in E. Let p be the polynomial interpolant of degree K − 1

to f in these points. If Γ is any positively oriented contour in E that encloses these points and the

point z, then

f(z)− p(z) =
1

2πi

∫
Γ

`(z)
`(ζ)

f(ζ)
ζ − z

dζ, (1.16)

where `(z) = (z − z0) · · · (z − zK−1) is the node polynomial for the grid.

The key observation to make from (1.16) is that the interpolation error depends on the behavior

of the ratio `(z)/`(ζ), where ζ lies on the contour Γ, on and inside of which f is assumed to be

holomorphic. The more rapidly this ratio decays as K increases, the more rapidly p(z) converges to

f(z). On the other hand, if the ratio grows with K, we will see divergence.

In more detail, if we are working on [−1, 1], select a contour Γ that encloses that interval. Defining

γK(x, ζ) =
∣∣`(ζ)/`(x)∣∣1/K , where x ∈ [−1, 1] and ζ ∈ Γ, we see that if γK(x, ζ) ≥ C(x) > 1 for all

ζ ∈ Γ and large enough K, we will obtain convergence of p(x) to f(x) at a rate of O
(
C(x)−K

)
. If

C can be chosen independently of x, we will get uniform convergence of p to f on [−1, 1] at a rate

of O(C−K).

These observations suggest that we study the asymptotic level curves of `(x)1/K for an inter-

polation scheme in the complex plane to better understand how it behaves. From the observations

of the preceding paragraph, we expect the worst-case behavior to be governed by the ratio of the

magnitude of the smallest value of |`(ζ)|1/K on Γ to that of the largest value of |`(x)|1/K on [−1, 1];

we need this ratio to be larger than 1 to ensure convergence on all of [−1, 1]. Noting that ` grows

in magnitude the farther away we are from the interval, we see that we need to be able to take Γ
19Our assumption that the points are distinct is merely for consistency with our setting thus far. The theorem still

holds if some of the points coincide and the interpolation problem is interpreted in the Hermite sense; see footnote 2.

16

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

(a)

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

(b)

Figure 1.2: Level curves of `(x)1/K for K = 32 (a) equispaced points and (b) second-kind Chebyshev
points on [−1, 1]. Note that each of the level curves in (b) surrounds [−1, 1], while several of those
in (a) do not.

far enough out into the complex plane that it encloses the first (asymptotic) level curve of |`(x)|1/K

that encloses [−1, 1]. Of course, we will need f to be holomorphic in the region of the complex plane

enclosed by this level curve in order to make this possible.

The level curves of `(x)1/K for K = 32 equispaced points and second-kind Chebyshev points

are displayed in Figure 1.2. In the equispaced case, the first level curve that encloses [−1, 1] is a

football-shaped curve20 that extends a modest distance out into the complex plane. To reiterate,

for equispaced interpolation to converge on all of [−1, 1], we will need f to be holomorphic within

the region bounded by this curve. This explains why we saw divergence for the function f(x) =

1/(1 + 25x2), which has poles inside this region at ±i/5. Instead, we are only able to obtain

convergence on the middle part of [−1, 1] that lies within the first level curve that does not include

these poles.

For Chebyshev interpolation, the situation is completely different. The level curves, which ap-

proach Bernstein ellipses, tend not to pass through [−1, 1]; rather, [−1, 1] is almost itself a level

curve! This behavior indicates that if f is holomorphic on any region containing [−1, 1], no matter

how small, we are guaranteed convergence of the interpolants to f on all of [−1, 1] as K →∞.

We emphasize that these differences in behavior are due to the asymptotic distribution of the

points, since the asymptotic level curves are determined ultimately by these distributions and not

the points themselves. Thus, any interpolation scheme that distributes its points in the same way

as Chebyshev interpolation is also guaranteed to converge for all holomorphic f . This includes

polynomial interpolation in the roots of other orthogonal polynomial systems, such as Legendre

and, more generally, Jacobi polynomials [129]. One can also consider interpolation in conformally-

mapped Chebyshev grids that have the same asymptotic distribution but which individually place
20More precisely, it is an American football-shaped curve.

17

more points in the center of the interval, giving a slightly faster rate of convergence in some cases

[54], [133, Ch. 22].

Our discussion here has been informal; however, one can make all of these notions precise using

tools from a branch of mathematics known as potential theory. In particular, the “asymptotic level

curves” of which we have spoken are the level curves of a logarithmic potential function associated

with the interpolation scheme. As presenting this subject carefully would take several pages and as

we shall not need any of the details in our later work, we will refrain from doing so. Instead, we

will content ourselves with stating the following very general theorem due to Fejér [41], Kalmár [67]

(cited in [22]), and Walsh [143] that confirms what we have written and extends it to interpolation

on more general sets in the complex plane. The version of it that we present can be found in [44,

Ch. 2, p. 65]; see also Theorem 1.1 of [22].

To state the theorem, we need to introduce some additional notions; we will not give details. Let

E be a compact, simply connected subset of C. By the Riemann mapping theorem [1], there is a

unique function ψ that is holomorphic on the exterior of the unit disc (i.e., the set {z ∈ C : |z| > 1})

and that maps it one-to-one and conformally onto C \ E, normalized so that ψ(∞) = ∞ and

ψ′(∞) > 0. Expanding ψ in a power series for |z| > 1, we have

ψ(z) = cz + c0 +
c1
z

+
c2
z

+ · · · ,

and our choice of normalization means that c > 0. The number c is called the logarithmic capacity

of the boundary ∂K of K. We say that a sequence {{zk,K}K−1
k=0 }∞K=1 of sets of points in E is

equidistributed21 on E if

lim
K→∞

M
1/K
K = c, (1.17)

where MK = ‖`K(z)‖∞,E , `K(z) = (z − z0,K) · · · (z − zK−1,K) is the node polynomial for the Kth

grid, and ‖ · ‖∞,E denotes the supremum norm on the space of continuous functions on E. For

R > 1, let ΓR denote the level curve of ψ defined by |ψ(z)| = R. If f is holomorphic on E, then

it is holomorphic in the interior of ΓR for some R > 1. Let ρ, 1 < ρ ≤ ∞, be the largest number

such that f is holomorphic in the interior of Γρ. A sequence {fn}∞n=1 of functions on E is said to

converge maximally to f on E if

lim
n→∞

‖f − fn‖1/n
∞,E = ρ−1.

Theorem 1.12 (Fejér–Kalmár–Walsh theorem). Let E and ψ be as above, and let {{zk,K}K−1
k=0 }∞K=1

be a sequence of sets of points in E. Then, pf,K → f pointwise on K for all functions f holomorphic

on E if and only if {{zk,K}K−1
k=0 }∞K=1 is equidistributed on E, where pf,K is the polynomial interpolant

21The term uniformly distributed is also frequently used; however, to avoid confusion, we prefer to reserve that
term for sequences that asymptotically follow a uniform distribution on K.

18

of degree K − 1 to f in the points z0,K , . . . , zK−1,K .22 If {{zk,K}K−1
k=0 }∞K=1 is equidistributed on E,

then pf,K → f maximally on E for each f holomorphic on E.

For further information on and extensions of the concepts discussed in this section, we refer the

reader to [44, Ch. 2], [76, 107, 118], [133, Ch. 11–13], and [144, Ch. VII].

1.2.8 Lebesgue Constants

The last concept that we will discuss in our tour of polynomial interpolation theory is that of the

Lebesgue constant. Given a grid of K distinct points x0, . . . , xK−1 ∈ [−1, 1], the map that takes

a function f ∈ C([−1, 1]) to its polynomial interpolant pf in those points is a linear operator on

C([−1, 1]), in fact, a linear projection onto PK−1. The Lebesgue constant Λ for the grid is the norm

of this projection:

Λ = sup
‖f‖∞≤1

‖pf‖∞, (1.18)

Since the values of f on the grid are the only ones that affect the behavior of the interpolant, we

can equivalently write (1.18) as

Λ = sup
|f(xk)|≤1
0≤k≤K−1

‖pf‖∞.

When working with a system of interpolation grids parameterized by the grid length, we will fre-

quently write ΛK for the Lebesgue constant for the grid of length K.

The traditional way to study the Lebesgue constant for a grid is via the properties of the corre-

sponding Lebesgue function

L(x) =
K−1∑
k=0

|`k(x)|, (1.19)

where `k is the kth Lagrange basis polynomial defined by (1.2). One can show that

Λ = sup
x∈[−1,1]

L(x), (1.20)

i.e., the Lebesgue constant is the maximum value of the Lebesgue function on [−1, 1].

Informally, the Lebesgue constant tells us how much bigger we can expect a polynomial in-

terpolant to be than the function it interpolates or, in other words, the amount by which the

interpolation process magnifies the function. In this sense, it gives us an absolute condition number

for the interpolation problem: the norm of the difference between the interpolant of a function f

and that of a perturbation f + g of f is ‖pf+g − pf‖∞ = ‖pg‖∞ ≤ Λ‖g‖∞. Thus, when passing to

the interpolant, a perturbation in the function can be amplified by a factor of at most the Lebesgue

constant. As we will see momentarily, this fact can be very important in determining the success or

failure of a polynomial interpolation scheme in the presence of rounding error.
22Here, the points z0,K , . . . , zK−1,K do not need to be distinct. If some of the points coincide, the interpolation

needs to be performed in the Hermite sense; see footnote 2.

19

Another reason Lebesgue constants are important is that they allow us to bound the difference

between a polynomial interpolant of a function and the best polynomial approximation to that

function of the same degree [133, Ch. 13, p. 108]:

Theorem 1.13. Let f ∈ C([−1, 1]). Let x0, . . . , xK−1 be K (distinct) points in [−1, 1], and let p ∈

PK−1 be the polynomial interpolant to f in these points. Let p∗ be the best polynomial approximation

to f of degree K − 1 in C([−1, 1]). Then,

‖f − p‖∞ ≤ (1 + Λ)‖f − p∗‖∞,

where Λ is the Lebesgue constant for the points xk.

The upshot of this theorem is that if the Lebesgue constant for the grid is not too large, then

polynomial interpolants in that grid are almost best approximations. This is tremendously useful,

since, as we mentioned in Section 1.2.5, true best approximations are expensive to compute, while

polynomial interpolants are simple. Since the number of applications in which a truly optimal

solution is required (as opposed to one which is merely near-optimal) is small, this theorem tells us

that as long as we can find a satisfactory grid, we can work with interpolants in the majority of

cases and still get good results.

Thus, it is clear that for an interpolation scheme to be successful, it should have a small Lebesgue

constant. The following theorem, due to Erdös [36] and Brutman [18] (with weaker forms known

even earlier), establishes a bound on just how small it can be for an arbitrary grid of size K:

Theorem 1.14. The Lebesgue constant for polynomial interpolation in any set of K distinct points

in [−1, 1] satisfies

Λ ≥ 2
π

logK + C,

where C = (2/π)
(
γ + log

(
4/π)

)
= 0.52125 . . ., and γ is the Euler–Mascheroni constant.

It follows that the Lebesgue constant for any interpolation scheme must grow23 at least as fast as

O(logK) as K →∞. The next result shows that the Lebesgue constant for Chebyshev interpolation

attains the optimal asymptotic growth rate.24 In this sense, it is as well-behaved as one could ever

ask.
23This is the key ingredient in the proof of Faber’s theorem (Theorem 1.6) on the divergence of polynomial interpo-

lation. If there were a scheme that yielded convergence for all f ∈ C([−1, 1]), then the uniform boundedness principle
of functional analysis would imply that its Lebesgue constants would remain bounded as K →∞, a contradiction.

24It is not true, however, that the Chebyshev points (of either kind) are optimal in the sense that a Chebyshev grid
minimizes the Lebesgue constant over all grids of the same length. Points that satisfy the latter condition are termed
“optimal points”; they are known to exist and to be unique, and their Lebesgue functions can be characterized via
an equioscillation property [25]. Finding an explicit representation for the optimal points remains an open problem.
For further discussion, see [128, Ch. III].

20

0 10 20 30 40 50
K

10 -20

10 -15

10 -10

10 -5

10 0

E
rr

or

equispaced
Chebyshev
best

Figure 1.3: Numerically computed infinity-norm errors in the interpolants to f(x) = e5(x−1) in K
equispaced points (blue crosses) and (second-kind) Chebyshev points (red dots) for various values of
K, together with the errors in the best approximations (black stars) of the corresponding degrees. In
spite of the fact that equispaced interpolation should converge for this function in theory, it diverges
numerically owing to the poor conditioning of the interpolation problem, which is reflected in the
exponentially growing Lebesgue constant.

Theorem 1.15. The Lebesgue constant for polynomial interpolation on [−1, 1] in a grid of K

second-kind Chebyshev points (1.13) satisfies

ΛK ≤ 2
π

logK + 1,

and hence ΛK ∼ (2/π) logK as K →∞.

In contrast, the Lebesgue constant for equispaced points is very large, growing at an exponential

rate:

Theorem 1.16. As K →∞, the Lebesgue constant for polynomial interpolation on [−1, 1] in a grid

of K equispaced points satisfies

ΛK ∼ 2K

eK logK
.

Theorem 1.15 is due to Ehlich and Zeller [35]. Theorem 1.16 was discovered independently by

Turetskii [136] and Schönhage [125]. All three of these results are presented in [133, Ch. 15, p. 109],

to which we refer the reader for further discussion and historical information.

Recalling our discussion from above, the explosive growth in the Lebesgue constant for equispaced

points means that equispaced interpolation becomes very badly conditioned as the grid size increases.

This causes it to behave poorly in the presence of rounding errors even when it should theoretically

succeed. This fact is illustrated in Figure 1.3, which displays the infinity-norm errors on [−1, 1] of

the interpolants in equispaced and (second-kind) Chebyshev points to the function f(x) = e5(x−1)

for several grid lengths K as well as those of the best polynomial approximations to f of the

corresponding degrees, all computed in standard IEEE double precision arithmetic using Chebfun.

21

The function f is entire (i.e., holomorphic in the entire complex plane), so there is no issue of

the Runge phenomenon; interpolants in equispaced points will converge to it in theory. Numerically,

however, we observe that the error in the equispaced interpolants decays only for grids up to length

K = 22, after which it increases steadily due to the amplification of rounding errors in the interpo-

lation process. In contrast, the Chebyshev interpolants converge nicely with the error reaching the

level of machine precision for grids of size K = 24 and larger. Their errors are only slightly larger

than those of the best approximations, in keeping with Theorems 1.13 and 1.15, thanks to the slow

growth of logK as K →∞.

1.3 Trigonometric Interpolation

The next form of interpolation that we consider is trigonometric interpolation, in which data is fit

using trigonometric polynomials instead of algebraic ones. Recall that a trigonometric polynomial

is a function of the form

t(x) =
N∑

k=−N

cke
ikx. (1.21)

The integer N is the degree of the trigonometric polynomial. We denote the space of all degree-N

trigonometric polynomials by TN .

Trigonometric interpolation is an appropriate tool to use when the function to be approximated

is 2π-periodic; it is perhaps the simplest method available for approximating such functions. The

precise interpolation problem we consider is the following:

Given K = 2N+1 distinct interpolation points x−N , . . . , xN ∈ [0, 2π) and K correspond-

ing values f−N , . . . , fN ∈ C, find a trigonometric polynomial t ∈ TN such that t(xk) = fk

for each k.

The solution to this problem always exists and is unique; this can be established via an argument

similar to that given for the polynomial interpolation problem in Section 1.2.1.

The standard reference on all matters related to trigonometric polynomials and series is Zyg-

mund’s classic monograph [155]. Another useful reference on these subjects is the paper [150], which

highlights the basics of the theory in addition to describing the recently developed trigonometric

interpolation capabilities of Chebfun.

1.3.1 Relation to Polynomial Interpolation

Trigonometric and polynomial interpolation are closely connected. Indeed, upon setting z = eix,

the trigonometric polynomial (1.21) becomes the Laurent polynomial

P (z) =
N∑

k=−N

ckz
k,

22

and, hence, setting zk = eixk , −N ≤ k ≤ N , our problem becomes one of Laurent polynomial

interpolation of the data fk in the points zk on the unit circle. This can be converted into an

ordinary polynomial interpolation problem of degree 2N by multiplying P by zN and the data fk

by zN
k . In more detail, let p be the polynomial of degree 2N such that p(zk) = eiNxkfk for each k.

Write p(z) =
∑2N

k=0 ck−Nz
k and define t(x) = e−iNxp(eix). It is easily checked that t has the form

(1.21) and that t(xk) = fk for each k. Thus, every trigonometric interpolation problem is exactly

equivalent to a polynomial interpolation problem in which the interpolation points lie on the unit

circle.

More generally, each theorem about polynomial interpolation or approximation that we stated in

the previous section has an analogue for trigonometric interpolation or approximation. In fact, our

presentation is backward in the sense that the trigonometric versions of the results are often used to

prove the polynomial ones! The key observation to make is that interpolation or approximation of a

function f ∈ C([−1, 1]) by polynomials is equivalent to interpolating or approximating the function

F (z) = f(Re z) on the unit circle using Laurent polynomials. We have already seen this principle at

work in Section 1.2.4, in which it was shown that every polynomial interpolation problem on [−1, 1]

is equivalent to a Laurent polynomial interpolation problem on the unit circle in points that are

conjugate symmetric.

Since this correspondence allows us to transform most results on either polynomial or trigono-

metric interpolation into the other with relatively little effort,25 rather than laboriously repeat every

result of the previous section in full with the necessary slight adjustments, we will simply refer to

the theorems already stated as needed, pointing out the differences when they are important. Some

of the main points to keep in mind are:

• For trigonometric interpolation, equispaced points are the natural interpolation points, whereas

for polynomial interpolation on [−1, 1], that role is played by the Chebyshev points. On the unit

circle, the natural points for polynomial or Laurent polynomial interpolation are the roots of

unity. By “natural”, we mean that these point sets have simple, explicit representations, have

the proper distributions in the potential-theoretic sense that are required to ensure convergence

of interpolation for all holomorphic functions (see Section 1.2.7), and have Lebesgue constants

with the optimal asymptotic growth rate (see Sections 1.2.8 and 1.3.3).

• When doing trigonometric interpolation of periodic functions that are holomorphic on R, the

natural domain for holomorphic functions is a strip centered on the real axis with half-width ρ.

On the unit circle, it is an annulus ρ−1 ≤ |z| ≤ ρ. For polynomial interpolation, it is a Bernstein

ellipse Eρ. By “natural”, we mean that if a function is holomorphic in the appropriate region,

25Often, this additional effort is trivial and can be done on sight with a change of variable. At other times, a
little more thought may be required, cf., the deduction of the trigonometric version of the Weierstrass approximation
theorem from its ordinary counterpart in [103].

23

trigonometric polynomial (circle) polynomial (interval)

[0, 2π] or [−π, π] T [−1, 1]
eikx zk Tk(x)

equispaced points roots of unity Chebyshev points
strip annulus Bernstein ellipse

Table 1.1: Analogies between trigonometric interpolation, polynomial and Laurent polynomial in-
terpolation on the circle, and polynomial interpolation on [−1, 1].

the corresponding type of interpolation in points that follow the appropriate distribution as

described in the previous item will converge at a rate of O(ρ−K) as the number of points K

tends to infinity.

• Trigonometric interpolants are naturally expressed in the complex exponential basis eikx. Poly-

nomial and Laurent polynomial interpolants on the unit circle are naturally expressed using

the monomial basis zk. Polynomial interpolants on the interval are naturally expressed using

the Chebyshev basis Tk(x). These bases are favorable numerically as well as theoretically.

A brief summary of these analogies is presented in Table 1.1.

1.3.2 Barycentric Representation

All mathematicians are familiar with the Lagrange form (1.3) for a polynomial interpolant. Less

widely appreciated is the fact that trigonometric interpolants, too, have Lagrange-style representa-

tions and even analogues of the barycentric formulas (1.4) and (1.6). As these formulas will be the

subject of study in Chapter 2, we will spend some time discussing them carefully here.

One way to arrive at the Lagrange form of a trigonometric interpolant is via the connection to

polynomial interpolation just described. Letting zk = eixk , −N ≤ k ≤ N as before, let `(z) =

(z − z−N) · · · (z − zN) be the node polynomial for the points z−N , . . . , zN , and let w−N , . . . , wN

be the associated barycentric weights. Then, by (1.4) and the discussion of first paragraph in the

previous section, we can represent the trigonometric interpolant t in the form

t(x) = e−iNx`(eix)
N∑

k=−N

wke
iNxk

eix − eixk
fk. (1.22)

This is already a trigonometric version of (1.4), but with a little more work, we can put it into a

form that is even more convenient. Using the identity

eiα − eiβ = 2iei α+β
2 sin

(
α− β

2

)
,

24

we can write

`(eix) = (2i)2N+1ei(N+ 1
2)x

N∏
k=−N

ei
xk
2 sin

(
x− xk

2

)
,

w−1
k = (2i)2NeiNxk

N∏
j=−N
j 6=k

ei
xj
2 sin

(
x− xj

2

)
,

eix − eixk = 2iei
x+xk

2 sin
(
x− xk

2

)
,

and upon inserting these expressions into (1.22), we arrive at

t(x) =

(
N∏

k=−N

sin
(
x− xk

2

)) N∑
k=−N

νk

sin
(

x−xk

2

)fk, (1.23)

where we have defined the trigonometric barycentric weights νk by

ν−1
k =

N∏
j=−N
j 6=k

sin
(
xk − xj

2

)
.

This is the trigonometric analogue of (1.4) that we seek.

To derive an analogue of (1.6), we use the observation that, by the uniqueness of trigonometric

interpolants,

1 =

(
N∏

k=−N

sin
(
x− xk

2

)) N∑
k=−N

νk

sin
(

x−xk

2

) .
Dividing (1.23) through by this identity on both sides, we obtain the representation

t(x) =

N∑
k=−N

νk

sin
(

x−xk

2

)fk

N∑
k=−N

νk

sin
(

x−xk

2

) , (1.24)

as desired. In analogy with the polynomial case, we refer to (1.23) and (1.24) as the first and

second trigonometric barycentric formulas, respectively. Using these, we can derive a formula for t

analogous to (1.3) by setting

`k(x) =
N∏

j=−N
j 6=k

sin
(

x−xj

2

)
sin
(

xk−xj

2

) (1.25)

for −N ≤ k ≤ N . We then have

t(x) =
N∑

k=−N

fk`k(x) (1.26)

by (1.23).

In the important case in which the interpolation points are equally-spaced points in [0, 2π), (1.23)

and (1.24) take on particularly simple forms. In writing these, it will be convenient to index the

25

points from 0 to 2N = K − 1 rather than from −N to N as we have done thus far. Specifically,

suppose that xk = (k + α)h, 0 ≤ k ≤ K − 1, where h = 2π/K is the grid spacing and 0 ≤ α ≤ 1 is

a parameter that determines the grid shift, i.e., the deviation of x0 from 0. Then, we have

K−1∏
k=0

sin
(
x− xk

2

)
= 2−(K−1) sin

(
K(x− αh)

2

)
and

νk =
2K−1

K
(−1)k.

Thus, (1.23) simplifies to

t(x) =
1
K

sin
(
K(x− αh)

2

)K−1∑
k=0

(−1)k

sin
(

x−xk

2

)fk, (1.27)

while (1.24) becomes

t(x) =

K−1∑
k=0

(−1)k

sin
(

x−xk

2

)fk

K−1∑
k=0

(−1)k

sin
(

x−xk

2

) . (1.28)

We observe that this latter formula is independent of α.

The Lagrange form expressed in (1.25) and (1.26) and of which (1.23) is a simple rewriting

was known to Gauss [45]. The equispaced formula (1.27) appears for α = 0 in the works of de la

Vallée Poussin [26] and Henrici [55]. The second formula (1.24) seems to have been first introduced

by Salzer in [122], and Henrici [55] appears to be the first to have written down its equispaced

version (1.28). Berrut [12] has provided special variants of (1.24) and (1.28) for cases in which the

interpolation data fk possess odd or even symmetry. Just as for their polynomial counterparts, the

primary advantage of these formulas is that they offer a way to evaluate trigonometric interpolants

in just O(K) operations.

Unlike their polynomial counterparts, however, the issue of the numerical stability of the trigono-

metric barycentric formulas is not quite as straightforward, even for the equispaced formulas (1.27)

and (1.28). These matters will be the focus of our results in Chapter 2.

1.3.3 Lebesgue Constants

Since trigonometric interpolation in K = 2N + 1 points is a linear projection from the space C2π of

continuous, real-valued, 2π-periodic functions on R (equipped, as usual, with the supremum norm

‖ · ‖∞) to TN , we can define a Lebesgue constant Λ for it as well in exactly the same manner as

we did for polynomial interpolation in Section 1.2.8, and it has exactly the same interpretation. In

analogy to (1.19) and (1.20), it can be shown that

Λ = sup
x∈[0,2π)

L(x),

26

where L is the trigonometric Lebesgue function

L(x) =
N∑

k=−N

|`k(x)|,

and `k(x) is defined by (1.25).

For equispaced points, the Lebesgue constant for trigonometric interpolation grows at the optimal

rate of (2/π) logK as K →∞ [21]:

Theorem 1.17. The Lebesgue constant for trigonometric interpolation in K = 2N + 1 equispaced

points satisfies

ΛK ≤ 2
π

logK + 2,

and ΛK ∼ (2/π) logK as K →∞.

In fact, more is true: equispaced points actually minimize ΛK for any fixed K [25]. That is, they

constitute an optimal grid for trigonometric interpolation.

In Chapters 3 and 4, we will consider what happens to ΛK when the interpolation points are

not equispaced. In this case, ΛK can in general be made arbitrarily large for any fixed K ≥ 3 by

taking two of the grid points to be close to one another. We will show, however, that if we exclude

this possibility by requiring the grid to be a perturbation of an equispaced grid (in a sense that

we will define precisely), the Lebesgue constant grows at a rate that is at most algebraic with a

modest exponent. This shows that trigonometric interpolation in nearly equispaced points is not

much worse than interpolation in exactly equispaced points, a fact that is potentially important in

practice, as it happens not infrequently that applications force one to consider nonuniform grids.

1.3.4 Even-Length Interpolants

Thus far, we have only spoken of trigonometric interpolants in an odd number of points. The reason

for this that a general trigonometric polynomial (1.21) has an odd number of terms/coefficients and

hence an odd number of degrees of freedom associated with it. With an even number of points,

the interpolation problem is either overspecified, in which case it generally has no solution, or

underspecified, in which case the solution is not unique. As a simple example, consider interpolation

of the data f0 = 1 and f1 = −1 at the points x0 = 0 and x1 = π in [0, 2π). In order to satisfy

these two conditions, the degree N of the interpolant must be at least 1. It is easy to check that the

trigonometric polynomial

t(x) =
(

1
2
− β

2i

)
e−ix +

(
1
2

+
β

2i

)
eix = cos(x) + β sin(x) (1.29)

satisfies them for any β ∈ C.

When the interpolation points are the K = 2N equispaced points xk = 2πk/K, 0 ≤ k ≤ K − 1,

the usual way to deal with this issue is to take the interpolant from TN but require that the coefficients

27

c−N and cN of the highest-order terms e−iNx and eiNx be equal.26 This amounts to the requirement

that the interpolant to the “sawtooth” data fk = (−1)k be a pure cosine. This is reflected in the

2-point example just given, since the coefficients of e−ix and eix in (1.29) are equal if and only if

β = 0, and in this case t(x) = cos(x).

One can write down barycentric formulas for even-length trigonometric interpolants similar to

those for odd-length ones given above, though they are a little more complicated for general grids.

For equispaced grids, however, they are simple to write down: just replace the sine in (1.27) and

(1.28) with the tangent! Specifically, in the special case of an equispaced grid with shift α ∈ [0, 1],

we have

t(x) =
1
K

sin
(
K(x− αh)

2

)K−1∑
k=0

(−1)k

tan
(

x−xk

2

)fk, (1.30)

instead of (1.27) and

t(x) =

K−1∑
k=0

(−1)k

tan
(

x−xk

2

)fk

K−1∑
k=0

(−1)k

tan
(

x−xk

2

) . (1.31)

in place of (1.28).

The first formula (1.30) is, like (1.27), a special case of a general Lagrange form known to

Gauss [45] and appears (with α = 0) in [26]. A version of it also appears in the work of of M.

Riesz [110, 111]. The second formula (1.31) seems to have been first written down by Henrici [55].

It is a special case of the more general second barycentric formula for even-length trigonometric

interpolation introduced by Salzer [123]. Just as in the odd-length case, Berrut [12] has developed

special versions for the cases in which the data possess symmetry.

Even-length trigonometric interpolants in equispaced points are encountered frequently in prac-

tice through the fast Fourier transform (FFT); indeed, the natural length for the FFT is a power of

2. For non-equispaced grids, they are much less natural than odd-length ones, and accordingly, we

will not say much about this case here.

1.4 Rational Interpolation

The last scheme we consider is interpolation by rational functions, which can have significant ad-

vantages over polynomials for approximating functions with singularities.27 The most basic form of

the rational interpolation problem is the Cauchy interpolation problem, which reads:
26Compare this with what was done in Section 1.2.4 when relating interpolation in a grid on [−1, 1] that includes

both endpoints to an interpolation problem on the unit circle.
27The prototypical example of this is Newman’s 1964 result showing that the best (uniform norm) type-(N, N)

rational approximations to |x| on [−1, 1] converge to the function at a rate of O
`
exp(−

√
N)

´
[92]. The best degree-N

polynomial approximations, on the other hand, converge only at a rate of O(N−1) [11]. See [133, Ch. 23, 25] for
further discussion.

28

Given integers M,N ≥ 0, K = M +N +1 distinct interpolation points z0, . . . , zK−1 ∈ C

and K corresponding values f0, . . . , fK−1 ∈ C, find polynomials p ∈ PM and q ∈ PN

such that r(z) = p(z)/q(z) satisfies r(zk) = fk for each k.

We say that the rational interpolant is of type (M,N). The expression for the number of points

K comes from the fact that one needs M + 1 and N + 1 conditions to specify p ∈ PM and q ∈ PN ,

respectively, and that because it is their quotient that matters, p and q can only be uniquely

determined up to a common constant factor. Thus, the total number of degrees of freedom present

in the problem is (M + 1) + (N + 1)− 1 = M +N + 1, and the number of interpolation conditions

is selected to match this.

1.4.1 The Linearized Problem

Unlike the polynomial and trigonometric interpolation problems, the solution to the Cauchy in-

terpolation problem may not always exist. As a simple example, take M = 0 and N = 1 with

K = 2 interpolation points z0 = 0 and z1 = 1 and corresponding data f0 = 0 and f1 = 1. Writ-

ing r(z) = a0/(b1z + b0) for some coefficients a0, b1, b0 ∈ C, the only way to enforce the condition

r(0) = 0 is to require a0 = 0, but then, r is identically 0 and cannot satisfy r(1) = 1.

A way around this problem that also leads to an algorithm for computing rational interpolants

is to linearize the problem by multiplying through by the denominator polynomial q. Rather than

enforcing the condition that p(zk)/q(zk) = fk for each k, we require that p(zk) = fkq(zk). As we

will see shortly, we can always find p and q that satisfy the linearized conditions; moreover, their

quotient will satisfy the Cauchy interpolation conditions at each point zk such that q(zk) 6= 0. If

q(zk) = 0 then the Cauchy condition might be satisfied at zk, or it might not. If not, we say that zk

is an unattainable point for the Cauchy interpolation problem.

Continuing with our example from above, p(z) = 0 and q(z) = z − 1 provide a solution to the

linearized equations for this problem. The quotient r(z) satisfies r(0) = 0, but r(1) 6= 1, so 1 is an

unattainable point. As an example of a problem for which one can have q(zk) = 0 and still satisfy

the Cauchy conditions, consider finding a type (1, 1) interpolant in the points z0 = −1, z1 = 0,

z2 = 1 to the data f0 = f1 = f2 = 1. Taking p(z) = q(z) = z − 1 solves the linearized problem, and

q(1) = 0, but r(1) = 1 all the same.28

1.4.2 Solving the Linearized Problem

There are several ways to solve the linearized problem. The approach we will take is the one described

by Pachón, Gonnet, and Van Deun in [97]. As we will see in the next section, this method lends

itself naturally to a technique for dealing with some of the practical problems that can arise when

computing rational interpolants.
28Of course, p(z) = q(z) = 1 is a simpler solution to the same problem.

29

There are two key ideas underlying this approach. The first is to represent p and q with respect

to a basis of polynomials ϕ0, ϕ1, . . . , ϕK−1 which have the properties that the degree of each ϕk is

exactly k and that the ϕk are orthogonal with respect to the inner product

〈f, g〉 =
K−1∑
k=0

f(zk)g(zk)

on PK−1. By “orthogonal”, we mean that

〈ϕj , ϕk〉 =

{
cj > 0 if j = k

0 if j 6= k.
(1.32)

We write p and q in this basis as follows:

p(z) =
K−1∑
k=0

akϕk(z) and q(z) =
K−1∑
k=0

bkϕk(z), (1.33)

where here we have taken M = N = K − 1. We will return to the issue of getting p and q to have

the correct degrees shortly.

The second key idea is to consider the map that takes the coefficients of q to the coefficients of

p required to satisfy the interpolation conditions, assuming that the coefficients of q have already

been found. Let

a =

 a0

...
aK−1

 and b =

 b0
...

bK−1


be the vectors of coefficients in the expansions (1.33), let

vk =

 ϕk(z0)
...

ϕk(zK−1)


for 0 ≤ k ≤ K− 1 be the vector of values that the basis polynomial ϕk assumes on the interpolation

grid, and let

f =

 f0
...

fK−1


be the vector of interpolation data. In [97], it is shown that

c · a = Zb,

where · represents elementwise (or “Hadamard”) multiplication, c is the vector of the values cj =

〈ϕj , ϕj〉,

c =

 c0
...

cK−1

 ,

30

and Z is the matrix

Z =

 v∗0
...

v∗K−1


f0 . . .

fK−1

 [v0 · · · vK−1

]
.

Briefly, the rightmost matrix in the product for Z is a Vandermonde-like matrix for the basis

ϕ0, . . . , ϕK−1 over the nodes z0, . . . , zK−1. Multiplying b by it on the left therefore yields a vector

with the values of the polynomial q on the interpolation grid. The diagonal matrix in the middle

then multiplies each of these values by the corresponding interpolation data, yielding the values of p

on the grid according to the interpolation conditions. Finally, the leftmost matrix, which by (1.32)

is “almost” the inverse of the rightmost one, converts the vector of values of p to the coefficient

vector a up to some scalings caused by the fact that the polynomials ϕj are not normalized.

We now have a way to pass from b to a, but we are not done: we need a way to get b, and we

must restrict p and q to have the desired degrees. Let

â =

 a0

...
aM

 and b̂ =

 b0...
bN


be the vectors of the “true” coefficients (i.e., those that are not automatically zero per our require-

ments). Supposing that we have found b̂ already, then by the same reasoning used above, we can

get a corresponding vector of numerator coefficients a via

c · a =

 v∗0
...

v∗K−1


f0 . . .

fK−1

 [v0 · · · vN

]
b̂.

In general, the entries M + 1, . . . ,K − 1 of a will be nonzero, so that this multiplication really does

give us a and not â; however, if we can choose b̂ so that these entries are zero, then we will be able

to compute

ĉ · â = Ẑb̂,

where

Ẑ =

 v
∗
0
...
v∗M


f0 . . .

fK−1

 [v0 · · · vN

]
,

and

ĉ =

 c0...
cM

 .
Choosing b̂ to force aM+1 = · · · = aK−1 = 0 amounts to the requirement

Z̃b̂ = 0,

31

where

Z̃ =

v
∗
M+1
...

v∗K−1


f0 . . .

fK−1

 [v0 · · · vN

]
. (1.34)

The matrix Z̃ is a product of three matrices of dimensions (K−M−1)×K, K×K, and K×(N+1),

respectively. Recalling that K = M + N + 1, we have that Z̃ has dimension N × (N + 1). Being

rectangular, Z̃ is guaranteed to have a nontrivial null vector, so finding such a b̂ is always possible;

this proves that the linearized rational interpolation problem always has a solution.

We thus have our procedure for computing â and b̂: compute a null vector of Z̃, e.g., via the

singular value decomposition (SVD), to find the denominator coefficients and then apply Ẑ to this

vector to obtain the numerator coefficients. This completes our description of the method from [97].

1.4.3 Spurious Poles, Robust Rational Interpolation

While rational approximations (and interpolants in particular) are powerful tools, they also have

a reputation for being fragile to compute numerically. The essence of the matter is that rounding

errors can introduce spurious poles into the approximation that destroy its accuracy in certain

regions. This problem is especially severe when the degrees of the numerator and denominator are

large; however, it can occur even when they are small.

As an example, consider computing a type (2, 3) rational interpolant to f(x) = 1/(x−3/2). The

function f is a rational function of type (1, 1), so the interpolant should match the function exactly.

An implementation of the algorithm described in the previous section is available in MATLAB via

the Chebfun (see Section 1.5) code ratinterp, which by default takes its interpolation points to

be Chebyshev points of the second kind in [−1, 1]. Using this code, we compute the interpolant as

follows:

>> [p, q] = ratinterp(@(x) 1./(x - 3/2), 2, 3, [], [], 0);

The outputs p and q are chebfun objects representing the numerator and denominator polynomials of

the interpolant, respectively. (The purpose of the “0” final argument to ratinterp will be explained

later.) The poles of the interpolant are just the roots of q:

>> roots(q, ’all’)

ans =

-0.926192390512845

0.248684045509895

1.499999999999999

We see that q has a root at 3/2, matching the pole in f , but it also has roots at two points in [−1, 1],

which will be poles of the interpolant unless they are exactly cancelled by corresponding roots in p.

This cancellation would happen in exact arithmetic; however, it does not in the presence of rounding

error. Instead, the roots of p only approximately cancel these roots of q, and the interpolant winds

32

up with a spurious pole-zero pair, sometimes called a Froissart doublet. As a result, evaluations of

the interpolant near these points will suffer from loss of accuracy, e.g.:

>> p(0.248684045509900)/q(0.248684045509900)

ans =

-0.822916666666667

>> 1./(0.248684045509900 - 3/2)

ans =

-0.799158674842831

This evaluation is accurate to only one digit.

The problem in this example is that the interpolant has more degrees of freedom than necessary to

capture the behavior of the function being interpolated, so there are many choices of the numerator

and denominator polynomials p and q that satisfy the linearized interpolation conditions. In terms

of the quantities introduced in the previous section, this manifests itself in the form of the matrix

Z̃ defined by (1.34) having a nullspace of dimension greater than 1.

To get a more robust procedure, the authors of [50] modified the algorithm of the previous

section to choose p and q to be of minimal degree. The basic idea is that if the nullspace of Z̃ has

dimension d, then we can always choose b̂ so that its last d − 1 components—those corresponding

to the highest degree terms in q—are zero. Thus, we can take q from PN−(d−1) instead of PN .

For general interpolation problems, the dimension of the nullspace of Z̃ will never be more than 1;

however Z̃ may have singular values that are small enough that they can be taken to be effectively

zero. Mathematically, this is the same as replacing the interpolation problem with a least-squares

problem.

This improved scheme is also implemented in ratinterp, which by default uses a threshold of

10−14 to decide when a singular value of Z̃ is small enough to be negligible. Indeed, to recover

the behavior of the non-robust algorithm, we had to explicitly disable robustness by setting the

threshold to zero when we called ratinterp earlier. To see that this technique fixes things for our

simple example, we recompute the rational interpolant with these robustness enabled via

>> [p, q] = ratinterp(@(x) 1./(x - 1.5), 2, 3);

Now, q is a linear polynomial with its sole root at the true pole:

>> roots(q, ’all’)

ans =

1.499999999999999

and evaluation at the previously troublesome point is now accurate to essentially full machine pre-

cision:

>> p(0.248684045509900)/q(0.248684045509900)

ans =

-0.799158674842830

33

For further details, see [50] and [133, Ch. 26]. Note that a similar technique to the one just

described can be applied to construct a robust algorithm for Padé approximation, in which one

seeks a rational function of prescribed numerator and denominator degrees whose Taylor series

coincides with that of the function being approximated up to maximal order at a specified point.

For more information, see [49] and [133, Ch. 27].

1.5 Chebfun

The ideas discussed in the preceding sections form the mathematical foundation for the Chebfun

software package for numerical computing with functions [29], which consists of a set of MATLAB

classes and subroutines for working with what the Chebfun development team calls “Chebyshev

technology.” While Chebfun itself is not the focus of this thesis, it has been a stimulus for much

of the work herein, and we will make use of it often for numerical illustrations. We close this

introductory chapter with a brief description of how it works.

The key idea underlying Chebfun is that high-degree polynomial interpolants can act as proxies

for the functions that they interpolate. These polynomials are represented using MATLAB objects

called chebfuns. Users construct chebfuns to represent the functions in which they are interested

and then operate using these chebfuns as if they were the functions themselves. The software takes

care of all of the operations on the underlying polynomial representations, shielding the user from

the fact that they are working with polynomials instead of the original functions. The result is a

computing experience that feels symbolic but which is actually numeric.

A chebfun is constructed from a given function by interpolating on finer and finer Chebyshev

grids until the interpolant approximates the function uniformly to machine precision on the interval

of interpolation. The system knows that it has accomplished this when the high-degree coefficients

of the polynomial in its Chebyshev basis representation (1.12) are sufficiently small.29

For instance, running

>> f = chebfun(@(x) x.*tanh(x + 1/5).*sin(10*(x - 1/2)))

f =

chebfun column (1 smooth piece)

interval length endpoint values

[-1, 1] 42 -0.43 -0.8

vertical scale = 0.81

creates a chebfun object representing the function f(x) = x tanh(x + 1/5) sin
(
10(x − 1/2)

)
on the

interval [−1, 1]. The “length” of 44 means that an interpolant in 44 Chebyshev points was necessary

29The basis for this criterion is the fact that every function f ∈ C([−1, 1]) that is just a little smooth (e.g., satisfies
the hypothesis of Theorem 1.8) can be expanded in a uniformly convergent Chebyshev series f(x) =

P∞
k=0 akTk(x).

If this series is absolutely convergent (which requires a little more than the hypothesis of Theorem 1.8; Lipschitz
continuity is sufficient), the coefficients ck of the Chebyshev interpolants to f in the representation (1.12) can be seen
to be sums of certain subsequences of the expansion coefficients ak. This happens because the Chebyshev polynomials
of degree K and higher alias to Chebyshev polynomials of a lower degree on the length-K Chebyshev grid. For further
details, see [133, Ch. 4].

34

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

0 10 20 30 40 50
Degree of Chebyshev polynomial

10 -20

10 -10

10 0

M
ag

ni
tu

de
 o

f c
oe

ffi
ci

en
t Chebyshev coefficients

Figure 1.4: Plot of the chebfun representing f(x) = x tanh(x−1/5) sin
(
10(x−1/2)

)
on [−1, 1] along

with its Chebyshev coefficients. Note that the coefficients asymptotically decay at a geometric rate,
reflecting the geometric convergence of the Chebyshev interpolants to this holomorphic function
predicted by Theorem 1.10.

to resolve this function to machine precision. Figure 1.4 shows a plot of the interpolant together

with its Chebyshev coefficients, which decay steadily in magnitude down to about 10−16. Note that

this function is holomorphic on [−1, 1], so its Chebyshev interpolants converge at a geometric rate by

Theorem 1.10. This is reflected in the asymptotic geometric decay rate of the coefficients observed

in the plot.

From a practical standpoint, there is essentially no difference between a function f and a poly-

nomial p that approximates f to machine precision. Polynomials, however, are simpler to work with

than general functions. It is much easier to extract information from a polynomial than it is from an

arbitrary function. For instance, we can ask for the integral of f , which is calculated by integrating

the Chebyshev interpolant; this is known as Clenshaw–Curtis quadrature [133, Ch. 19]:

>> sum(f)

ans =

-0.092888511319387

This operation is called sum after the built-in MATLAB operation of the same name that sums the

elements of a discrete numeric vector. The idea is that a chebfun behaves as a sort of “continuous”

MATLAB vector, and the continuous analogue of summation is integration. Many other operations

on chebfuns are derived from operations on discrete vectors using similar reasoning. Since the

interpolant represents f to machine precision, this result will be accurate in perhaps all but its last

digit or two.

We could also ask for the zeros of f , which can be computed by solving an eigenvalue problem

involving what is known as a colleague matrix, in which the Chebyshev coefficients appear in the

final row [51], [133, Ch. 18]:

>> roots(f)

ans =

35

-0.756637061435917

-0.442477796076938

-0.200000000000000

-0.128318530717964

0.000000000000004

0.185840734641019

0.499999999999999

0.814159265358979

These, too, will be accurate to essentially full machine precision.

As a last example, we compute the maximum value of sin
(
f(x)2

)
:

>> max(sin(f.^2))

ans =

0.608576905765540

This runs the adaptive sampling process twice: first to build a chebfun for f(x)2 by evaluating the

one for f(x) and then to build one for sin
(
f(x)2

)
by evaluating the one for f(x)2 just constructed. It

then computes the roots of the derivative of this chebfun to find all of the local extrema and checks

each to see which yields the maximum value.

Chebfun can do much more than we have described here. Further details can be found in the

Chebfun users’ guide [29].

36

Chapter 2

Numerical Stability of the
Barycentric Formula for
Trigonometric Interpolation1

In this chapter, we present the first new contribution of this thesis: a study of the numerical stability

of the barycentric formulas for trigonometric interpolation presented in Section 1.3.2. We restrict

our attention to the case in which the points are equispaced. Additionally, we will be concerned

primarily with the formula for interpolation in an odd number of points, though we will make a few

remarks about what happens for the even-length formula towards the end.

2.1 Introduction

We begin by recalling our notational setup from Section 1.3.2. Let K ≥ 1 be an odd integer, and

let X be a set of K equispaced points

xk = (k + α)h, 0 ≤ k ≤ K − 1, (2.1)

in [0, 2π], where h = 2π/K is the grid spacing and α ∈ [0, 1] is a parameter that determines the grid

shift (i.e., the deviation of x0 from 0). Let f0, . . . , fK−1 be arbitrary real numbers, which we take

as elements of a vector f . The unique trigonometric polynomial tf,X of degree N = (K − 1)/2 that

interpolates the value fk at the points xk for each k can be expressed using either the first barycentric

formula (1.27) or the second formula (1.28), which are analogues for trigonometric interpolation of

the polynomial barycentric formulas (1.4) and (1.6).

Recall from Section 1.2.2 that the polynomial barycentric formulas enjoy favorable properties

with regard to numerical stability: the first formula (1.4) is backward stable, and the second formula

(1.6) is forward stable if the Lebesgue constant for the grid is not too large. In particular, the second

1The content in this chapter is adapted from the paper [8] by the author and collaborator Kuan Xu. Xu raised
the original question of whether the formula (1.28) is stable and worked jointly with the author in investigating the
matter numerically. The author proposed the suggested method for stabilizing the formula, worked out most of the
theoretical analysis with Xu carefully checking the details, and wrote the text of the paper.

37

formula is stable when the interpolation points are Chebyshev points in [−1, 1]. On the basis that the

trigonometric formulas (1.27) and (1.28) are so similar in structure to their polynomial counterparts,

it is reasonable to guess that they should possess similar properties.

Unfortunately, this is not the case. Henrici [55] notes that the first formula (1.27) suffers from

instability as K grows due to the inability to evaluate the factor sin
(
K(x−αh)/2

)
in front of the sum

to high relative accuracy for large K. Even for small K, both Henrici [55] and Berrut [12] indicate

that this factor causes instability when evaluating (1.27) when x is close to one of the interpolation

points xk. No such problems occur with the polynomial formula (1.4).

For (1.28), the situation appears at first to be better. With the problematic leading factor from

(1.27) out of the picture, the only remaining issue to settle is what happens for evaluations near

interpolation points, the same concern that was expressed about (1.6). It would seem that the

same informal argument about potentially large errors cancelling out in the quotient that is used

to explain the stability of (1.6) (see Section 1.2.2) should apply here as well, and Henrici [55] does

indeed make this argument. Moreover, both Henrici [55] and Berrut [13] provide numerical examples

illustrating the apparent stability of (1.28).

It turns out, however, that this is not quite true. While (1.28) produces good results in the

majority of cases, it does, in fact, possess a subtle instability that seems to have been overlooked

in the investigations of Henrici [55] and Berrut [12, 13]. We illustrate and explain the origin of

this instability in Section 2.2. Fortunately, it is possible to correct the instability via a rewriting

of (1.28), as we show in Section 2.3. Combining the original and rewritten formulas, we obtain an

algorithm that is forward stable, and we prove this rigorously in Section 2.4 by adapting the analysis

of Higham [58] for the polynomial formulas to our setting. Finally, in Sections 2.5 and 2.6 we discuss

interpolation on intervals other than [0, 2π] and make a few remarks on what happens when K is

even instead of odd.

2.2 Instability of the Second Formula

We can demonstrate the instability in (1.28) by a simple numerical example. Take α = 1, K = 3, and

fk = sin(xk) for each k. We evaluate (1.28) with these parameters at several points x whose distances

from 0 range from 1 to 10−15. We perform the evaluation twice: once in double precision and once

in 256-bit (approximately 75-digit) precision using the arbitrary precision arithmetic features of the

Julia programming language [16], which are based on the GNU MPFR library [42]. We take the

high precision results as “exact” and use them to measure the relative error in the results obtained

in double precision.

The results are displayed in Figure 2.1. The error increases steadily as the evaluation point x

moves closer to 0. On the other hand, the product of the relative condition number κ(x,X, f) for

38

10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

Distance from 0

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
la

ti
v
e
 e

rr
o
r

Relative error vs. distance from 0

Figure 2.1: Illustration of instability in (1.28) in the case α = 1. The solid blue line depicts the
relative error in the evaluations for the example described in Section 2.2. The dashed red line
shows the product of the condition number of the evaluations (computed using the formula given
by Lemma 2.2 below) and the unit roundoff u = 2−52. As the distance between the evaluation
point and 0 decreases, the relative error rises even though the evaluation remains well-conditioned,
indicating numerical instability.

evaluating tf,X(x) (see Section 2.4.1) and the unit roundoff u = 2−52 is at the level of u for all eval-

uation points x considered. We conclude that (1.28) is indeed unstable under these circumstances.2

After a little thought, the origin of the instability can be identified. For our choice of α, xK−1 =

2π, so when x is near 0, we evaluate the sine function at a point close to π when computing the terms

at k = K − 1 in the numerator and denominator of (1.28). The sine function is poorly conditioned

near π,3 so the rounding errors incurred when forming (x−xK−1)/2 get magnified into large relative

errors in the computed value of sin
(
(x− xK−1)/2

)
.

For many uses of (1.28), these errors do not cause any problems, since they cancel out in the

final quotient as described in Section 2.1. The mechanism driving the cancellation in this case is the

dominance of the k = K − 1 terms in the numerator and denominator of (1.28): for α near 1 and x

near 0, these terms will typically be much larger than the terms for k < K−1, since sin
(
(x−xK−1)/2

)
is nearly 0. Hence, any relative error in the k = K−1 terms, even a large one, will divide out neatly

when taking the quotient. In our example, however, fK−1, which has a magnitude on the order of
2Note that in this example, we measure the relative error in the evaluation near a root of the interpolant.

This may seem strange initially, as one can usually only expect the error to be small in an absolute sense at such
points. Nevertheless, the small relative condition number tells us that, in principle, we should be able to evaluate the
interpolant with a low relative error here. The reason for this is that while we are evaluating near a root, that root
is near an interpolation point, and the value of the interpolant at the interpolation point is known exactly.

3By this, we mean that for values of x near π, a change in x that is small in a relative sense can yield changes in
sin(x) that are large in a relative sense. More quantitatively, the condition number of a differentiable function f at a
point x is defined to be

κf (x) =

˛̨̨̨
˛̨ lim
∆x→0

f(x+∆x)−f(x)
f(x)

∆x
x

˛̨̨̨
˛̨ =

˛̨̨̨
x

f ′(x)

f(x)

˛̨̨̨
.

If κf (x) is large, then small relative changes in x can yield large relative changes in f(x). For f(x) = sin(x), we have
κf (x) = |x cot(x)|, and this number grows without bound as x approaches π. For further details on these concepts,
see [57, §1.6], [94, Ch. 12], and [134, Lecture 12].

39

10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

Distance from 2π

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
la

ti
v
e
 e

rr
o
r

Relative error vs. distance from 2π

Figure 2.2: Same as Figure 2.1 but with α = 0 and with the evaluation points located near 2π
instead of 0. The relative error is at the level of machine precision due to the special circumstances
enjoyed by this case.

10−16, is much smaller than fk for k < K − 1, all of which have magnitudes on the order of 1. This

poor scaling of the function values relative to each other offsets the dominance of the k = K − 1

terms, resulting in imperfect cancellation.

Something interesting occurs if we repeat the experiment but take α = 0 instead of α = 1. In this

case, we anticipate instability when evaluating at points near 2π instead of 0, with the problematic

terms occurring at k = 0 instead of k = K − 1. The results are displayed in Figure 2.2. While

the plot of the product of the condition number and the unit roundoff is unaltered, surprisingly, the

relative error is at the level of machine precision for all evaluation points. The reason this happens is

that when α = 0, x0 = 0. Thus, (x− x0)/2 is evaluated exactly for all x ∈ [0, 2π], since subtraction

of 0 and division by 2 incur no errors in standard IEEE floating-point arithmetic. There is therefore

no rounding error made whose effect can be amplified by the ill conditioning of the sine function, so

the instability cannot be excited in this special but very common case. If α is taken to be only near

0 (say, 10−15) instead of exactly 0, the instability appears as expected.

We speculate that this behavior is one of the reasons the instability described in this section has

evaded notice in the literature, as the α = 0 grid is perhaps the most frequently employed grid of

equispaced points in [0, 2π]; indeed, [55] works exclusively with this grid. The instability becomes

noticeable when considering other grids, such as the α = 1 grid and when working with the analogue

of the α = 0 grid on [−π, π], for which the first point is −π, a number which is undistinguished in

floating-point arithmetic.

2.3 A Stable Algorithm

The instability just described only arises when the interpolation data are poorly scaled in the sense

that either f0 or fK−1 is much smaller than the other fk when α is near 0 or 1, respectively. If this

is not the case, i.e., if max1≤k≤K−1 |fk/f0| (for α near 0) or max0≤k≤K−2 |fk/fK−1| (for α near 1)

40

is not too large,4 then (1.28) will be stable for all evaluation points in [0, 2π]. Interpolation data

that are as wildly poorly-scaled as those of the examples shown in the previous section are relatively

uncommon in practice. Even when the data are poorly scaled, most evaluations of the trigonometric

interpolant are done in the interior of the interval, where the sine evaluations are well-conditioned,

and (1.28) will be stable in this case as well. Thus, (1.28) is stable in most cases of practical interest.

Nevertheless, knowing how to fix the instability is valuable so that it can be done when needed.

This can be accomplished by rewriting (1.28) to avoid evaluating the expression sin
(
(x − xk)/2

)
near points where it is poorly conditioned. There are two situations in which a bad evaluation can

occur: when α is near 0 and the evaluation point x is near 2π and when α is near 1 and x is near 0.

The remedy we propose is to use periodicity to adjust the location of the interpolation point

furthest from x in these cases so that the distance between it and x can never get too close to 2π.

Consider the case where α is near 0. For x near 2π, the interpolation point furthest from x is x0,

so we modify (1.28) by replacing x0 by its periodic image x0 + 2π and changing the signs of the

k = 0 terms in both sums. The resulting formula, which amounts to using (1.28) to compute an

interpolant in the points x1, . . . , xK−1, x0 +2π instead of x0, x1, . . . , xK−1, is exactly equal to (1.28)

mathematically but not in floating-point arithmetic. Similar comments apply to the case where α

is near 1 and x is near 0, for which we replace xK−1 by xK−1 − 2π and change the signs of the

k = K − 1 terms. For explicit formulas, see (2.2) and (2.3), below.

We are not done yet, however, as all we have actually done is rewrite the poorly conditioned

terms in (1.28) in a different way. The modified terms are still poorly conditioned, as a problem’s

conditioning is independent of how it is written down or represented. What has changed is the

source of the poor conditioning. Instead of through the sine function itself, it now enters via the

potential for cancellation error in the computation of the argument to the sine function. The second

key idea needed to stabilize (1.28) is the realization that we can avoid these problems by computing

the argument in a particular way, as we now describe.

First, we must group the terms of the argument appropriately. Consider the case where α is

near 0, so that the argument to the sine function in the modified term is (x− x0 − 2π)/2. Ignoring

the division by 2, which has no potential for cancellation, if we evaluate the rest in floating-point

arithmetic from left to right as (x − x0) − fl(2π), where fl(2π) is the nearest floating-point number

to 2π (see Section 2.4.2), then the second subtraction will involve two nearby quantities whenever

x is near 2π and x0 is near 0. Even if the second subtraction is performed without rounding error,

accuracy will be lost if the magnitude of the rounding error made in the first subtraction is significant

compared to the magnitude of the final result.
4As a rule of thumb, one can expect to lose roughly one digit of accuracy in evaluations near the “bad” endpoint

for each order of magnitude in these quantities. For instance, if α is near 0 and max1≤k≤K−1 |fk/f0| is on the order
of 108, then a loss of about 8 digits in evaluations near 2π would be typical.

41

We can fix this by grouping the terms as
(
x−fl(2π)

)
−x0 instead. While the subtraction x−fl(2π)

still incurs cancellation, it is of a benign sort, as neither x nor fl(2π) has been contaminated by

rounding errors from previous computations (but see the next paragraph). Moreover, since x ≤ fl(2π)

and x0 ≥ 0, the second subtraction involves two quantities of opposite sign, and hence no further

cancellation can occur. The final result will therefore be a high relative accuracy approximation to

the exact value (i.e., computed without rounding error) of x− x0 − fl(2π).

This is almost what we want but not quite: we really want a high relative accuracy approximation

to x−x0−2π. Evaluating
(
x−fl(2π)

)
−x0 in floating-point arithmetic will not generally deliver this

because of the rounding error in the approximation fl(2π) ≈ 2π. While the cancellation in x−fl(2π)

is benign when this subtraction is viewed simply as a difference between two floating-point numbers,

it is catastrophic from the perspective of computing an approximation to x− 2π.

The fix for this is to subtract off an additional correction term to compensate for the error in the

approximation fl(2π) ≈ 2π. More precisely, let c be the nearest floating-point number to 2π−fl(2π).

Then, in exact arithmetic, fl(2π)+c is an approximation to 2π with relative error on the order of the

square of the unit roundoff (see Section 2.4.2). We cannot form fl(2π) + c directly in floating-point

arithmetic because c is insignificant compared to fl(2π) and would be rounded off; however, if adding

or subtracting fl(2π) to or from something results in a quantity small enough that c is significant in

comparison, we can expect to obtain a higher accuracy result if we subsequently add or subtract c

as appropriate.

In this discussion, we have considered only the case where α is close to 0 for definiteness; similar

remarks apply to the modified version of (1.28) for α close to 1. Rigorous justification for all of these

statements will be given in the analysis of Section 2.4. The value c can be easily computed using any

software package that supports arbitrary precision arithmetic or even by hand with aid of a table that

lists the value of π to many places. For IEEE floating-point arithmetic, c = 2.4492935982947064×

10−16 in double-precision, and c = −1.7484555× 10−7 in single-precision.

The only remaining matter is to decide precisely when to use the modified formulas instead of

(1.28), i.e., to give a criterion for determining when x is “too close” to 0 or 2π. For reasons that

we will justify in Section 2.4, we switch to the modified formulas whenever x is within π|1− 2α|/K

of the relevant endpoint. Note that for α = 1/2, this quantity is zero, so (1.28) is used without

modification for all x ∈ [0, 2π].

To summarize, the exact procedure we propose is the following:

• If α ∈ [0, 1/2), use (1.28) for x ∈ [0, 2π − π(1− 2α)/K]. For other values of x, use

tf,X(x) =

K−1∑
k=1

(−1)k

sin
(

x−xk

2

)fk −
1

sin
(

x−x0−2π
2

)f0
K−1∑
k=1

(−1)k

sin
(

x−xk

2

) − 1
sin
(

x−x0−2π
2

) , (2.2)

42

10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

Distance from 0

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
la

ti
v
e
 e

rr
o
r

Relative error vs. distance from 0

Figure 2.3: Same as Figure 2.1 but using the formula (2.3) (with x−x0−2π computed as prescribed
in Section 2.3) instead of (1.28) to do the evaluations. All errors are now at the level of machine
precision.

with x− x0 − 2π computed as
((
x− fl(2π)

)
− c
)
− x0.

• If α = 1/2, use (1.28) for all x ∈ [0, 2π].

• If α ∈ (1/2, 1], use (1.28) for x ∈ [π(2α− 1)/K, 2π]. For other values of x, use

tf,X(x) =

K−2∑
k=0

(−1)k

sin
(

x−xk

2

)fk −
1

sin
(

x−xK−1+2π
2

)fK−1

K−2∑
k=0

(−1)k

sin
(

x−xk

2

) − 1

sin
(

x−xK−1+2π
2

) , (2.3)

with x− xK−1 + 2π computed as x−
((
xK−1 − fl(2π)

)
− c
)
.

This scheme has the disadvantage that an implementation must make decisions based on the location

of the evaluation point. It is therefore less computationally efficient than (1.28); however, this is the

price that must be paid to guarantee stability for all evaluation points x and all possible interpolation

data fk.

To verify that the scheme we have described works, we repeat our experiment from Section 2.2

with α = 1 using this algorithm. All of the evaluation points x considered lie in [0, π(2α− 1)/K), so

we use (2.3) for all of them. The relative error, depicted in Figure 2.3, is now at the level of machine

precision, even for evaluation points that are very close to 0.

2.4 Analysis of the Proposed Algorithm

We complete our investigation by putting the observed stability of the algorithm given in the previous

section on a rigorous basis with a formal proof. The notation and framework we use for our analysis

are borrowed directly from Higham’s paper [58]. To keep our discussion self-contained, we repeat

the relevant definitions here.

43

2.4.1 Condition Number

Our bounds will be stated in terms of the condition number given in following definition. We denote

by |f | the vector whose components are the absolute values of the corresponding components of the

vector f . Inequalities between vectors are understood to hold componentwise.

Definition 2.1. For tf,X(x) 6= 0, the relative condition number of tf,X at x with respect to pertur-

bations in f is

κ(x,X, f) = lim
ε→0

sup
{∣∣∣∣ tf,X(x)− tf+∆f,X(x)

εtf,X(x)

∣∣∣∣ : |∆f | ≤ ε|f |
}
.

A trivial rearranging of (1.27) yields the following Lagrange form for tf,X(x) (cf. (1.25) and

(1.26)):

tf,X(x) =
K−1∑
k=0

`k(x)fk, `k(x) =
(−1)k

K

sin
(

K(x−αh)
2

)
sin
(

x−xk

2

) .

The following lemma gives an explicit expression for κ(x,X, f) and shows how it can be used to

bound the relative difference between tf,X(x) and tf+∆f,X(x) for a given perturbation ∆f . It directly

parallels Lemma 2.2 of [58] and can be proved in exactly the same way.

Lemma 2.2. We have

κ(x,X, f) =

K−1∑
k=0

|`k(x)fk|

|tf,X(x)|
≥ 1,

and for any vector ∆f with |∆f | ≤ ε|f |,∣∣∣∣ tf,X(x)− tf+∆f,X(x)
tf,X(x)

∣∣∣∣ ≤ εκ(x,X, f).

2.4.2 Floating-Point Model

We denote floating-point approximations to quantities by fl(·). The standard model of floating-point

arithmetic [57, Ch. 2] posits that whenever x and y are floating-point numbers and ~ is one of the

four basic arithmetic operations +, −, ×, or ÷, we have

fl(x~ y) = (x~ y)(1 + δ)±1, |δ| ≤ u, (2.4)

where u is the unit roundoff. We use this model with one modification: we assume additionally that

whenever x is a floating-point number

fl
(
sin(x)

)
= sin(x)(1 + δ)±1, |δ| ≤ u. (2.5)

This assumption is not guaranteed to hold by any floating-point standard; however, it is possible

to accomplish this and similarly for the other common transcendental functions with high-quality

implementations [83]. Moreover, the latest revision of the IEEE floating-point standard recommends

44

(but does not mandate) that languages supporting floating-point operations also provide correctly

rounded implementations for all such basic functions5 [60]. This suggests that our additional as-

sumption is, at the very least, reasonable. In fact, we will not require its full force: for our purposes,

it is sufficient for it to hold when x ∈ [−π, π].

The symbol 〈n〉 denotes the accumulation of n relative errors accrued during a floating-point

computation:

〈n〉 =
n∏

i=1

(1 + δi)ρi , ρi = ±1, |δi| ≤ u.

When necessary, we write 〈n〉k to indicate that the relative errors depend on an index k.

Throughout our analysis, we will at times need to assume that nu ≤ 1, where n is a small positive

integer. These assumptions will hold for any floating-point system that is used in practice.

2.4.3 Technical Lemmas

Before we proceed, we first pause to establish a pair of minor technical results that we will need in

our analysis. Recall the formula for the points xk given in (2.1).

Lemma 2.3. If α ∈ [0, 1/2], then for 1 ≤ k ≤ K − 1 and all x ∈ [0, 2π],∣∣∣∣x− xk

2
cot
(
x− xk

2

)∣∣∣∣ ≤ 2K − 1.

If k = 0, then the same holds for x ∈ [0, 2π − π(1− 2α)/K].

Proof. We use the following inequality, valid for t ∈ [−π, π], whose proof we omit:

| cot(t)| ≤ max
(

1
|t|
,

1
π − |t|

)
. (2.6)

Thus, we have ∣∣∣∣x− xk

2
cot
(
x− xk

2

)∣∣∣∣ ≤ max
(

1,
|x− xk|

2π − |x− xk|

)
,

for 0 ≤ k ≤ K − 1, since (x − xk)/2 ∈ [−π, π]. The second argument to max is maximized when

|x − xk| is as close to 2π as possible. If 1 ≤ k ≤ K − 1, then since α ∈ [0, 1/2], this happens when

x = 0 and k = K − 1, giving

|x− xk|
2π − |x− xk|

≤
(K − 1 + α) 2π

K

2π − (K − 1 + α) 2π
K

=
K

1− α
− 1 ≤ 2K − 1.

On the other hand, if k = 0 and x is restricted to [0, 2π − π(1− 2α)/K], then |x− x0| is closest to

2π when x is at the right endpoint of that interval, so

|x− x0|
2π − |x− x0|

≤
2π − π 1−2α

K − α 2π
K

2π −
(
2π − π 1−2α

K − α 2π
K

) = 2K − 1

as well. As 2K − 1 ≥ 1, this completes the proof.
5For instance, the implementation for sine contributed by IBM to glibc (v. 2.21 at the time of this writing) claims

to do this.

45

Lemma 2.4. If α ∈ [0, 1/2], then for x ∈ (2π − π(1− 2α)/K, 2π],∣∣∣∣x− x0 − 2π
2

cot
(
x− x0 − 2π

2

)∣∣∣∣ ≤ 1.

Proof. Since |x− x0| ≤ 2π, we have |x− x0 − 2π| = 2π − (x− x0), and for x in the given interval,

we have x ≥ x0, so |x− x0| = x− x0. Thus, by (2.6),∣∣∣∣x− x0 − 2π
2

cot
(
x− x0 − 2π

2

)∣∣∣∣ = ∣∣∣∣x− x0 − 2π
2

cot
(
x− x0

2

)∣∣∣∣
≤ max

(
|x− x0 − 2π|
|x− x0|

,
|x− x0 − 2π|
2π − |x− x0|

)
= max

(
2π − (x− x0)

x− x0
, 1
)
.

The first argument to max in the final line is maximized when x− x0 is as small as possible. Given

the restrictions on x, this happens when x = 2π − π(1− 2α)/K, so we have

2π − (x− x0)
x− x0

≤
2π − 2π + π 1−2α

K + α 2π
K

2π − π 1−2α
K − α 2π

K

=
1

2K − 1
.

The result follows, since 1/(2K − 1) ≤ 1.

2.4.4 Stability Analysis

We are now ready to carry out our analysis. For the remainder of this section, x is taken to be

a fixed value in [0, 2π], and we assume that x, xk, and fk are all floating-point numbers.6 We

ignore all issues of overflow and underflow. Our goal is to obtain a bound on the relative error

|tf,X(x)− t̂f,X(x)|/|tf,X(x)|, where t̂f,X(x) is the approximation to tf,X(x) obtained by evaluating

(1.28), (2.2), or (2.3) in floating-point arithmetic as prescribed in Section 2.3. Specifically, we will

prove the following theorem:

Theorem 2.5. In the absence of overflow and underflow, the relative error in evaluating tf,X(x) in

floating-point arithmetic using the algorithm of Section 2.3 satisfies∣∣∣∣∣ tf,X(x)− t̂f,X(x)
tf,X(x)

∣∣∣∣∣ ≤ (5K + 7)uκ(x,X, f) + (5K + 6)
(

2
π

log(K) + 2
)
u+O(u2) (2.7)

for all α ∈ [0, 1].

Thus, the procedure outlined in Section 2.3 gives a forward stable method for evaluating trigono-

metric interpolants in equispaced points.
6Of course, it is not possible that the xk are simultaneously exactly equispaced in [0, 2π] and also floating-point

numbers. With approximately equispaced xk, the formulas (1.28), (2.2), and (2.3) only approximate the trigonometric
interpolant instead of computing it exactly. This does not matter for our investigation, however, as we are only
concerned with the numerical stability of these formulas. Mascarenhas and de Camargo [80] have given an analysis
of the effects of rounding errors in the interpolation points in the polynomial case.

46

Proof. We will establish the bound for α ∈ [0, 1/2]; the argument for α ∈ (1/2, 1] is similar. Our

argument is identical in structure to the one given by [58] for the polynomial case.

First, we develop an expression for t̂f,X(x) in the case where (1.28) is used for the evaluation.

By (2.4), we have, for some δk,1 and δk,2 with |δk,1| ≤ u and |δk,2| ≤ u,7

fl
(
x− xk

2

)
=
x− xk

2
(1 + δk,1)(1 + δk,2). (2.8)

Hence, by (2.5) and the fact that sin
(
x(1 + ε)

)
= sin(x)

(
1 + εx cot(x) +O(ε2)

)
for small ε, we have

fl
(

sin
(
x− xk

2

))
= sin

(
x− xk

2
(1 + δk,1)(1 + δk,2)

)
〈1〉k = sin

(
x− xk

2

)(
1 + ηk +O(u2)

)
〈1〉k ,

where

ηk = (δk,1 + δk,2)
x− xk

2
cot
(
x− xk

2

)
.

Therefore, our floating-point approximation to the numerator of (1.28) is given by

fl

(
K−1∑
k=0

(−1)kfk

sin
(

x−xk

2

)) =
K−1∑
k=0

(−1)kfk

sin
(

x−xk

2

) 〈2〉k 〈K − 1〉k
1 + ηk +O(u2)

=
K−1∑
k=0

(−1)kfk

sin
(

x−xk

2

) 〈K + 1〉k
(
1− ηk +O(u2)

)
,

where we have picked up one rounding error from the division in each term and K − 1 rounding

errors from the K − 1 additions in the sum8 and have used the expansion 1/(1 + ε) = 1− ε+O(ε2).

The denominator of (1.28) may be handled similarly. Adding one more rounding error to account

for the final division, we arrive at

t̂f,X(x) =

K−1∑
k=0

(−1)kfk

sin
“

x−xk
2

” 〈K + 2〉k
(
1− ηk +O(u2)

)
K−1∑
k=0

(−1)k

sin
“

x−xk
2

” 〈K + 1〉k
(
1− ηk +O(u2)

) .
This expression is similar in form to the corresponding one obtained in [58] in the polynomial case,

the key difference being the presence of the 1− ηk +O(u2) factors, which represent the error due to

the conditioning of the sine evaluations.
7If one assumes the use of a binary floating-point system (like IEEE floating-point arithmetic), the division by 2

will be performed exactly, so one can take δk,2 = 0. Doing this will yield a bound that is tighter than the one we
establish but only very slightly so.

8The order in which the terms are summed does not matter here; see [57, Ch. 4].

47

Next, just as in the proof of Theorem 4.1 of [58], we have

∣∣∣∣∣ tf,X(x)− t̂f,X(x)
tf,X(x)

∣∣∣∣∣ ≤
(
K + 2 + 2 max

0≤k≤K−1

∣∣∣∣x− xk

2
cot
(
x− xk

2

)∣∣∣∣)u
K−1∑
k=0

∣∣∣∣ fk

sin
“

x−xk
2

” ∣∣∣∣∣∣∣∣K−1∑
k=0

(−1)kfk

sin
“

x−xk
2

” ∣∣∣∣
+
(
K + 1 + 2 max

0≤k≤K−1

∣∣∣∣x− xk

2
cot
(
x− xk

2

)∣∣∣∣)u
K−1∑
k=0

∣∣∣∣ 1

sin
“

x−xk
2

” ∣∣∣∣∣∣∣∣K−1∑
k=0

(−1)k

sin
“

x−xk
2

” ∣∣∣∣ +O(u2)

=
(
K + 2 + 2 max

0≤k≤K−1

∣∣∣∣x− xk

2
cot
(
x− xk

2

)∣∣∣∣)uκ(x,X, f)

+
(
K + 1 + 2 max

0≤k≤K−1

∣∣∣∣x− xk

2
cot
(
x− xk

2

)∣∣∣∣)uκ(x,X, 1) +O(u2),

(2.9)

where the second step follows from Lemma 2.2. (Here, the 1 in κ(x,X, 1) refers to a vector of

interpolation data whose entries are all 1.)

The only potential problem with this bound is in the terms involving the cotangent function,

which can be large if |x− xk|/2 is close to π for some k, reflecting the poor conditioning of the sine

function near ±π. Most dramatically, if α = 0, then x0 = 0, and cot
(
(x−x0)/2

)
becomes unbounded

as x gets close to 2π. Additionally, in such cases, the error term represented by the O(u2) symbol

may not be negligible, since the implied constant contains terms with cot
(
(x − xk)/2

)
as a factor

for each k.

These remarks do not apply to the algorithm of Section 2.3, however, because its rules prevent

(1.28) from being used in these problematic cases. Since we are assuming α ∈ [0, 1/2], it will only

be used if x ∈ [0, 2π − π(1− 2α)/K]. The reason for this particular choice of restriction is given by

Lemma 2.3, which gives a very simple bound for the cotangent terms in (2.9). Applying this result

to (2.9), for x ∈ [0, 2π − π(1− 2α)/K], we obtain∣∣∣∣∣ tf,X(x)− t̂f,X(x)
tf,X(x)

∣∣∣∣∣ ≤ 5Kuκ(x,X, f) + (5K − 1)uκ(x,X, 1) +O(u2). (2.10)

On the other hand, if x ∈ (2π− π(1− 2α)/K, 2π], we use (2.2) instead of (1.28). We handle the

argument to the sine function in the modified terms as follows. Write fl(2π) = 2π(1 + δ2π), where

|δ2π| ≤ u. Then,

fl
(
x− fl(2π)

)
=
(
x− 2π(1 + δ2π)

)
(1 + δ0,1) =

(
x− 2π

)(
1− 2π

x− 2π
δ2π

)
(1 + δ0,1),

where |δ0,1| ≤ u. Next, we subtract the correction term c to adjust for the error in the approximation

fl(2π) ≈ 2π as explained in Section 2.3. As c is by definition the nearest floating-point number to

48

2π − fl(2π) = −2πδ2π, we have c = −2πδ2π(1 + δc) with |δc| ≤ u. Therefore,

fl
((
x− fl(2π)

)
− c
)

=
(
fl
(
x− fl(2π)

)
− c
)
(1 + δ0,2)

=
((
x− 2π

)(
1− 2π

x− 2π
δ2π

)
(1 + δ0,1) + 2πδ2π + 2πδ2πδc

)
(1 + δ0,2)

= (x− 2π)
(

1 +
2πδ2π(δc − δ0,1)

x− 2π
+ δ0,1

)
(1 + δ0,2),

where |δ0,2| ≤ u. Since x is a floating-point number, and since fl(2π) is the nearest floating-point

number to 2π, we have |x− 2π| ≥ |fl(2π)− 2π| = 2π|δ2π|. Thus,∣∣∣∣2πδ2π(δc − δ0,1)
x− 2π

∣∣∣∣ ≤ |δc|+ |δ0,1| ≤ 2u,

and so we may write fl
((
x−fl(2π)

)
− c
)

= (x−2π)(1+ ξ̂0,1)(1+ δ0,2), where |ξ̂0,1| ≤ 3u. Multiplying

out the error terms and making the reasonable assumption that |ξ̂0,1δ0,2| ≤ u, which will hold if

3u ≤ 1, we can simplify this to fl
((
x− fl(2π)

)
− c
)

= (x− 2π)(1 + ξ̃0,1), where |ξ̃0,1| ≤ 5u.

These developments allow us to write, in analogy to (2.8),

fl

(((
x− fl(2π)

)
− c
)
− x0

2

)
=

(
(x− 2π)(1 + ξ̃0,1)− x0

)
(1 + δ0,3)

2
(1 + δ0,4)

=
x− x0 − 2π

2
(1 + ξ0,1)(1 + δ0,3)(1 + δ0,4), (2.11)

where ξ̃0,1 is as above, |δ0,3| and |δ0,4| are both at most u, and ξ0,1 = ξ̃0,1

(
(x− 2π)/(x− x0 − 2π)

)
.

Since x− 2π and −x0 have the same sign, |(x− 2π)/(x− 2π − x0)| ≤ 1, and so |ξ0,1| ≤ |ξ̃0,1| ≤ 5u.

Note that this is a consequence of our having grouped the terms as prescribed in Section 2.3. From

here, we work similarly to before and arrive at∣∣∣∣∣ tf,X(x)− t̂f,X(x)
tf,X(x)

∣∣∣∣∣ ≤ (K + 2 + C)uκ(x,X, f) + (K + 1 + C)uκ(x,X, 1) +O(u2),

where

C = max
(

2
(

max
1≤k≤K−1

∣∣∣∣x− xk

2
cot
(
x− xk

2

)∣∣∣∣) , 7 ∣∣∣∣x− x0 − 2π
2

cot
(
x− x0 − 2π

2

)∣∣∣∣) .
The factor of 7 in the second argument to the outer instance of max comes from the fact there are

three rounding error terms in (2.11) that add up to at most 7u compared with the two in (2.8) that

add up to at most 2u. To bound C, we use Lemma 2.4. Combining this with Lemma 2.3, we have

C ≤ max (4K − 2, 7) ≤ 4K + 5,

and so ∣∣∣∣∣ tf,X(x)− t̂f,X(x)
tf,X(x)

∣∣∣∣∣ ≤ (5K + 7)uκ(x,X, f) + (5K + 6)uκ(x,X, 1) +O(u2) (2.12)

for x ∈ (2π−π(1− 2α)/K, 2π]. In fact, noting that (2.12) is slightly weaker than (2.10), we see that

(2.12) actually holds for x ∈ [0, 2π].

49

To finish, we note, again following [58], that κ(x,X, 1) is bounded above by the Lebesgue constant

for the interpolation problem, which is at most (2/π) log(K) + 2 by Theorem 1.17. Combining this

with (2.12) yields (2.7). This completes the proof of Theorem 2.5.

Note carefully that this analysis depends strongly on the evaluation point x and the interpolation

points xk being in [0, 2π]. In particular, for the α < 1/2 case that we described in detail, it does not

apply to evaluations at x = fl(2π) if fl(2π) > 2π.9 The reason is that, under these circumstances,

x − 2π and x0 may have the same sign, and so the factor multiplying ξ̃0,1 to define ξ0,1 in (2.11)

can be large if x0 is chosen carefully. In IEEE double-precision arithmetic, fl(2π) < 2π, so this is

not a problem; however, in IEEE single-precision arithmetic, fl(2π) > 2π, and it is not difficult to

construct a numerical example in which the algorithm of Section 2.3 is unstable for x = fl(2π).

If fl(2π) > 2π and a stable evaluation at x = fl(2π) is desired, it can be accomplished with the

aid of a second correction term. To see this, note first that since x = fl(2π), when we compute

x− x0 − 2π as prescribed in Section 2.3, the subtraction x− fl(2π) evaluates exactly to zero. Thus,

we are left to evaluate

fl(−c− x0) = (2πδ2π + 2πδ2πδc − x0)(1 + δ1) = (x− x0 − 2π)
(

1 +
2πδ2πδc

x− x0 − 2π

)
(1 + δ1), (2.13)

where |δ1| ≤ u and we have used the fact that x = fl(2π) = 2π(1 + δ2π). Since c is by definition

the nearest floating-point number to −2πδ2π, and since −x0 is a floating-point number, we have

|x−x0− 2π| = |−x0− (−2πδ2π)| ≥ |c− (−2πδ2π)| = 2π|δ2πδc|. Thus, |2πδ2πδc/(x−x0− 2π)| could

be as large as 1, and if this is the case, we will not have computed x− x0 − 2π accurately.

This calculation highlights that the problem is due to the fact that |x− x0 − 2π| can be as small

as 2π|δ2πδc|, which is O(u2), while we have only corrected for the error in fl(2π) ≈ 2π down to

O(u). This naturally suggests a fix of subtracting an additional term that corrects the error down

to O(u2).

To this end, let c2 be the nearest floating-point number to 2πδ2πδc. We have c2 = 2πδ2πδc(1+δc2),

where |δc2 | ≤ u. In IEEE double precision, c2 = −5.989539619436679×10−33, and in single precision,

c2 = −6.860498× 10−15. Subtracting c2 from the result of (2.13), we obtain

fl
(
(−c− x0)− c2

)
=
(

(x− x0 − 2π)
(

1 +
2πδ2πδc

x− x0 − 2π

)
(1 + δ1)− 2πδ2πδc − 2πδ2πδcδc2

)
(1 + δ2)

= (x− x0 − 2π)
(

1 + δ1 + 2πδ2πδc
δ1 − δc2

x− x0 − 2π

)
(1 + δ2),

where |δ2| ≤ u. Using the lower bound on |x− x0 − 2π| just derived and collecting the error terms,

we find that fl
(
(−c− x0)− c2

)
= (x− x0 − 2π)(1 + ξ) with |ξ| ≤ 5u (assuming that 3u ≤ 1). This

is certainly accurate enough for our purposes.

Similar remarks apply in the α > 1/2 case if xK−1 is taken to be fl(2π).
9Note that fl(2π) is the only floating-point number x in [0, fl(2π)] for which one can have x > 2π, for if 2π < x <

fl(2π), then x would be a closer floating-point number to 2π than fl(2π).

50

2.5 Interpolation on Intervals Other than [0, 2π]

With the main result of this chapter now established, in the remaining two sections, we examine

what happens to our discussions in some settings beyond the one we have considered up to this

point.

Thus far, we have confined our discussion to interpolation on the interval [0, 2π]. At first glance,

it would seem that much of what we have said translates directly to other intervals with little

additional work, since (1.28) holds for x and xk drawn from any given interval of length 2π, a

consequence of its depending only on the values of x− xk for each k and not on the values of x and

xk individually. In fact, the issue is more subtle, as we now explain.

The instability in (1.28) that we presented in Section 2.2 arises when poor conditioning of the

sine function amplifies rounding errors in the computation of (x− xk)/2 into large relative errors in

the computed value of sin
(
(x−xk)/2

)
for some k. If it happens that (x−xk)/2 is computed exactly

for all k for which the corresponding evaluation of the sine function is ill-conditioned, this cannot

occur, and (1.28) will perform the evaluation stably. We observed this behavior empirically in the

numerical experiments of Section 2.2 involving the α = 0 grid on [0, 2π]. In terms of the analysis of

Section 2.4, this corresponds to having δk,1 = δk,2 = 0 in (2.8) for the relevant values of k so that

the bound (2.10) for the relative error in using (1.28) to evaluate tf,X(x) in floating-point arithmetic

holds for all x ∈ [0, 2π] instead of just for x in the restricted interval given there.

In IEEE floating-point arithmetic, which uses a binary floating-point system, multiplication and

division by 2 are always exact, barring overflow and underflow. Thus, whether (x−xk)/2 is computed

exactly boils down to whether the subtraction x − xk is done exactly. When working on intervals

other than [0, 2π], especially those away from the origin, this can happen with a far greater frequency

than one might initially expect, owing to the following theorem of Sterbenz [57, Ch. 2]:

Theorem 2.6 (Sterbenz’s theorem). If s and t are floating-point numbers such that t/2 ≤ s ≤ 2t,

then fl(s− t) = s− t in the absence of underflow.

Note that the hypotheses of the theorem imply that s and t are both nonnegative; an analogous

result can be stated when s and t are both negative. It is easy to check that for a ≥ 2π, the condition

t/2 ≤ s ≤ 2t is satisfied for all s, t ∈ [a, a + 2π]. Hence, all of the subtractions x − xk that occur

when using (1.28) to interpolate on such an interval will be done exactly, and it follows that (1.28) is

stable! Similarly, (1.28) is stable for interpolation on all intervals of the form [b−2π, b], for b ≤ −2π.

Thus, there is no need to modify (1.28) in these circumstances.

For other intervals, i.e., length-2π subintervals [a, b] of (−4π, 4π), we can interpolate stably in the

vast majority of cases using a modified version of the algorithm of Section 2.3 under some additional

assumptions that are given in the discussion below. The formulas (2.2) and (2.3) are still applicable;

we just need to change how we compute the arguments to the sine function in the modified terms.

51

If we can show that these can be computed to high relative accuracy, then the rest of the analysis

in Section 2.4 can be applied with only very minor modifications to conclude that the resulting

algorithm is stable. As before, there are two issues that must be handled:10 how to group the terms

and how to correct for the fact that 2π cannot be represented exactly in floating-point arithmetic.

For the former, the appropriate generalization in the case where α < 1/2 is to compute x−x0−2π

as (x − b) − (x0 − a), while for α > 1/2, we compute x − xK−1 + 2π as (x − a) − (xK−1 − b).

These arrangements have the same previously identified crucial property that the terms in the final

subtraction have opposite signs so that the only cancellation that occurs is the benign cancellation

in each of the individual subtractions x− b and x0 − a.

The latter issue is more delicate, since the approximation fl(2π) ≈ 2π does not enter into the

computation directly. Instead, what we must correct for is the deviation of b − a from 2π that we

get when a and b are floating-point numbers. Ideally, we would have b− a = fl(2π) so that we could

correct the error using the quantity c introduced previously, but this is not guaranteed. In general,

the most we can say is that b− a = fl(2π) + γ for some γ that is hopefully not too large.

This leads us to the two key assumptions we make for the remainder of this section. First, we

assume that |b − a − 2π| ≤ |x − x0 − 2π| in the case where α < 1/2; for α > 1/2, we assume

|a− b+ 2π| ≤ |x− xK−1 + 2π|. These inequalities would hold if b− a were exactly 2π, but they can

fail when b and a are floating-point numbers whose difference merely approximates 2π.

Second, we assume that γ itself is a floating-point number. At first glance, this seems rather

restrictive, but it actually holds quite often as we now explain. Suppose for the moment that

π ≤ b ≤ 4π. Then, by Theorem 2.6, b − fl(2π) is exactly a floating-point number. If a has been

chosen well, then a and b−fl(2π) will not be far from each other. If they are close enough to each other

that the subtraction γ =
(
b− fl(2π)

)
− a can be done exactly in floating-point arithmetic, then we

are done. Looking to Theorem 2.6 once again, this is guaranteed if a/2 ≤ b− fl(2π) ≤ 2a. Similarly,

if −4π ≤ a ≤ −π, then a + fl(2π) is exactly a floating-point number, and if b/2 ≤ a + fl(2π) ≤ 2b,

then γ = b−
(
a+ fl(2π)

)
will be a floating-point number as well.

Since any length-2π subinterval [a, b] of [−4π, 4π] has either −4π ≤ a ≤ −π or π ≤ b ≤ 4π,

and since the conditions imposed by Theorem 2.6 are rather mild, γ will be exactly a floating-point

number in virtually every case of practical interest. In particular, this is true for interpolation on

[−π, π] with a = −fl(π), b = fl(π) (in fact, γ = 0 in that case), which is arguably the most important

interval for trigonometric interpolation aside from [0, 2π]. Note that the discussion of the preceding

paragraph also gives a way to compute γ in floating-point arithmetic for a given a and b.

To convert γ into an approximation of b − a − 2π, it remains to correct for the error in the

approximation fl(2π) ≈ 2π. For reasons similar to those given in the remarks following the proof of

Theorem 2.5, using c alone will not suffice. We must additionally correct for the rounding error in the
10We remark that similar issues—with similar resolutions—arise in the investigations of [80] into the effects of

rounding errors in the interpolation points on the performance of the barycentric formulas for polynomial interpolation.

52

approximation c ≈ −2πδ2π using the constant c2 defined previously. We compute, in floating-point

arithmetic,

fl
(
(γ − c)− c2

)
=
((
b− a− fl(2π)− c

)
(1 + δ1)− c2

)
(1 + δ2)

=
((
b− a− 2π + 2πδ2πδc

)
(1 + δ1)− 2πδ2πδc − 2πδ2πδcδc2

)
(1 + δ2)

= (b− a− 2π)
(

1 + δ1 + 2πδ2πδc
δ1 − δc2

b− a− 2π

)
(1 + δ2), (2.14)

where |δ1| and |δ2| are at most u.

Our assumption that γ is a floating-point number has the consequence that we can bound |b −

a − 2π| from below, for |b − a − 2π| = |b − a − fl(2π) + 2πδ2π| = |γ − (−2πδ2π)|. Since −γ is a

floating-point number, and since c is the closest floating-point number to 2πδ2π, the right-hand side

can be no smaller than |c− (−2πδ2π)| = 2π|δ2πδc|. It follows that∣∣∣∣2πδ2πδc
δ1 − δc2

b− a− 2π

∣∣∣∣ ≤ |δ1|+ |δc2 | ≤ 2u,

and hence, multiplying out the error terms in (2.14), we find that we may write fl
(
(γ − c) − c2

)
=

(b− a− 2π)(1 + ξγ), where |ξγ | ≤ 5u and where we have implicitly made the reasonable assumption

that 4u ≤ 1. Thus, fl
(
(γ − c)− c2

)
is a high relative accuracy approximation to b− a− 2π.

At last, we can show how to compute the argument to the sine function in the modified terms

of (2.2) and (2.3) to the needed accuracy. As usual, we consider the α < 1/2 case, the α > 1/2 case

being similar. First, we compute, using the grouping of the terms prescribed earlier in this section

fl
(
(x− b)− (x0 − a)

)
=
(
(x− b)(1 + δ1)− (x0 − a)(1 + δ2)

)
(1 + δ3)

=
(
x− x0 − (b− a)

)(
1 +

δ1(x− b)
(x− b)− (x0 − a)

+
δ2(x0 − a)

(x− b)− (x0 − a)

)
(1 + δ3),

where |δ1|, |δ2|, and |δ3| are all at most u. Since x− b and −(x0− a) have the same sign, the factors

multiplying δ1 and δ2 in the second bracketed factor are at most 1 in absolute value, and it follows

that we have fl
(
(x − b) − (x0 − a)

)
=
(
x − x0 − (b − a)

)
(1 + ξ1), where |ξ1| ≤ 4u, assuming that

2u ≤ 1. Writing c′ = fl
(
(γ − c)− c2

)
for brevity, we now apply the correction we just computed to

obtain

fl
((

(x− b)− (x0 − a)
)
− c′

)
=
(
(x− x0 − (b− a))(1 + ξ1)− (b− a− 2π)(1 + ξγ)

)
(1 + δ1)

= (x− x0 − 2π)
(

1 + ξ1
x− x0 − (b− a)
x− x0 − 2π

+ ξγ
b− a− 2π
x− x0 − 2π

)
(1 + δ4),

where |δ4| ≤ u. By our assumption that |b − a − 2π| ≤ |x − x0 − 2π|, the factors multiplying

ξ1 and ξγ in this equation are bounded in magnitude by 2 and 1, respectively. Thus, we have

fl
((

(x− b)− (x0−a)
)
− c′

)
= (x−x0− 2π)(1+ ξ) with |ξ| ≤ 15u, assuming that 13u ≤ 1, as desired.

Applying similar arguments for the case where α > 1/2, we can summarize our findings in this

section as follows:

53

• If a ≥ 2π or b ≤ −2π, we can interpolate stably using (1.28) directly.

• If [a, b] ⊂ (−4π, 4π) with b−a = fl(2π)+ γ, we can interpolate stably if γ is exactly a floating-

point number and if |b−a−2π| ≤ |x−x0−2π| when α ∈ [0, 1/2) or |a−b+2π| ≤ |x−xK−1+2π|

when α ∈ (1/2, 1]. These assumptions are not always valid, but they hold in many cases.

• If both assumptions in the last item hold, the interpolant can be computed by calculating γ

via

–
(
b− fl(2π)

)
− a if π ≤ b < 4π or

– b−
(
fl(2π) + a

)
if −4π < a ≤ −π

and then computing the correction factor c′ = (γ − c)− c2. Then, there are three cases:

– If α ∈ [0, 1/2), use (1.28) for x ∈ [a, b−π(1−2α)/K]. Otherwise, use (2.2) with x−x0−2π

computed as
(
(x− b)− (x0 − a)

)
− c′.

– If α = 1/2, use (1.28) for all x ∈ [a, b].

– If α ∈ (1/2, 1], use (1.28) for x ∈ [a + π(2α − 1)/K, b]. Otherwise, use (2.3) with x −

xK−1 + 2π computed as
(
(x− a)− (xK−1 − b)

)
− c′.

2.6 Interpolation in an Even Number of Points

Our analysis in this chapter has focused exclusively on the version of the second formula applicable

to an odd number K of equispaced points. We close with a few words about the case of even K.

The even-K counterpart of (1.28) was given in (1.31) in Section 1.3.4. It is identical to (1.28)

except that the sine function is replaced by the tangent. The instability in (1.28) emerged from the

poor conditioning of the sine function near ±π. The tangent function is also poorly conditioned

near ±π, so one would expect (1.31) to suffer from a similar instability. Indeed, this is the case, and

it can be corrected analogously.

This is not the end of the story, however, as the tangent function additionally suffers from poor

conditioning near ±π/2, suggesting the possibility of an instability in (1.31) when |x − xk| is close

to π for some k, an instability that (1.28) does not possess. At first glance, it seems that this is not

an issue, since if |x− xk| is close to π, then tan
(
(x− xk)/2

)
is large. If the interpolation data in the

vector f are all comparable in magnitude to one another, this means that the kth terms in the sums

in (1.31) will be small relative to the rest so that while they may have been evaluated inaccurately

due to the poor conditioning, their contribution to the final result will be negligible. If the datum

fk is much larger than the others, however, it will offset the growth in tan
(
(x−xk)/2

)
, the kth term

in the numerator will not be relatively small, and the instability will manifest itself.

54

10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

Distance from 4π/3

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
la

ti
v
e
 e

rr
o
r

Relative error vs. distance from 4π/3

(a)

10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

Distance from 4π/3

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
la

ti
v
e
 e

rr
o
r

Relative error vs. distance from 4π/3

(b)

Figure 2.4: Illustration of the instability in (1.31) when |x− xk| is close to π for some k. The solid
blue lines show the relative error in the evaluations for the experiment described in Section 2.6 with
(a) f1 = 1015 and (b) f1 = 1030. The dashed red lines depict the product of the condition number
(computed using the even-K analogue of Lemma 2.2) and the unit roundoff u = 2−52.

We can illustrate these effects with the following numerical example. Let α = 0 and K = 6, so

that the grid points are xk = kπ/3, 0 ≤ k ≤ 5, and let the interpolation data be f0 = f2 = f3 =

f4 = f5 = 1 and f1 = 1015. We evaluate the interpolant using (1.31) at several points x near 4π/3

so that |x − x1| is close to π. Just as in the experiments of Sections 2.2 and 2.3, we perform the

evaluation once using double-precision arithmetic and once using higher-precision arithmetic and

then compute the relative error in the former, taking the latter as “exact.” Since f1 is considerably

larger than the other interpolation data, we expect to see evidence of instability.

The results are displayed in Figure 2.4a, which plots the relative error as a function of the

distance of x from 4π/3. As predicted, the formula does indeed exhibit instability. The “pyramid”

shape of the error curve is due to the fact that 4π/3 is a grid point, x4. As x gets closer to 4π/3,

tan
(
(x − x4)/2

)
shrinks, causing the k = 4 term in the sum in the numerator of (1.31) to become

larger. At the same time, the k = 1 term that suffers from the ill conditioning of the tangent

function becomes smaller, as explained previously; it only retains its significance because of the

large magnitude of f1. For the value of f1 that we have chosen, the k = 1 term is the dominant term

in the sum until the distance from 4π/3 has decreased to about 10−7, after which the k = 4 term

takes over. Since the evaluations of the tangent function in the k = 4 term are all well-conditioned

for x in the chosen range, it is computed to high relative accuracy. Hence, we expect the error in

the overall evaluation to improve as it takes more and more control from the k = 1 term.

We can verify the correctness of this explanation by making the datum f1 so large that the k = 1

term always makes a significant contribution to the sum, even when the distance between x and 4π/3

is very small. In this case, we expect to see the error rise steadily as the distance shrinks. These

expectations are confirmed by Figure 2.4b, which shows the results of running the same experiment

with f1 = 1030.

55

Regrettably, this new instability is not as easily corrected as the one described in Section 2.2.

The technique from Section 2.3 of using periodicity to change the interpolation grid is not applicable

here: if |x − xk| is close to π, then |x − (xk + 2nπ)| will be close to an odd multiple of π for any

integer n, so the evaluation of tan
(
(x − (xk + 2nπ))/2

)
associated with the adjusted point in the

resulting modified formula is still poorly conditioned. Moreover, there are more ways to excite this

new instability than there are for the previous one, since for a given interpolation grid, there are

several choices of x and xk such that |x − xk| is close to π, while there is only one such that that

|x−xk| is close to 2π. A method for stabilizing (1.31), if one exists, will likely require several modified

formulas, one for each possible case, in addition to the even-K analogues of (2.2) and (2.3).

56

Chapter 3

Trigonometric Interpolation in
Non-Equispaced Points I1

In the last chapter, we focused exclusively on the particular case of trigonometric interpolation in

equispaced points. In this chapter and the next, we consider the problem of trigonometric interpola-

tion in non-equispaced points and study the approximation properties of trigonometric interpolation

in what we call perturbed equispaced grids. We also consider the related problem of quadrature.

Note that while we discuss only trigonometric interpolation, thanks to the correspondence between

trigonometric and polynomial interpolation outlined in Section 1.3.1, all of our results possess ana-

logues for the polynomial case as well.

3.1 Introduction

As mentioned in Section 1.3.3, equispaced points constitute an optimal grid for trigonometric in-

terpolation. When one is free to choose the points that are used, there is usually no reason to

consider anything else. In applications, however, this is not always the case. For instance, practical

considerations in biomedical [141] and satellite imaging [3, 40] make the use of irregular sampling

grids appealing or even mandatory. Further examples may be found in the review article [2] and

the references therein. We are thus led to consider the problem of interpolation in non-equispaced

points.

Just as with polynomial interpolation, trigonometric interpolation in arbitrary points is, in gen-

eral, badly behaved. If the points are not properly—that is, uniformly2—distributed, one can get

divergence even for holomorphic functions via the trigonometric version of the Runge phenomenon
1The content of this chapter and the next contains work carried out by the author in collaboration with his

doctoral supervisor Lloyd N. Trefethen. Trefethen suggested the possibility of proving theorems for approximation
and quadrature via trigonometric interpolation in perturbed equispaced points by studying the Lebesgue constant.
The author performed the extensive numerical investigations presented in the text and worked out the proof for the
bound on the Lebesgue constant given in Theorem 3.6.

2By “uniformly distributed”, we mean that the fraction of points lying in a subinterval [a, b] of [−π, π] tends
to (b − a)/(2π) as the number of points tends to infinity. This definition dates back to Weyl [148]. In contrast to
polynomial interpolation, for trigonometric interpolation, uniformly distributed points are equidistributed according
to (the trigonometric analogue of) the definition given in Section 1.2.7.

57

(see Section 1.2.7). Even when the points are properly distributed, one can still run into prob-

lems when computing interpolants numerically if the Lebesgue constants (see Sections 1.2.8 and

1.3.3) are large, as can happen, e.g., if two of the interpolation points are very close together.

The latter statement can be rephrased as saying that the convergence guaranteed in theory by the

Fejér–Kalmár–Walsh theorem (Theorem 1.12), which makes suppositions only about the asymptotic

distribution of the points and not the locations of the points themselves, is not robust numerically.

Perhaps even more fundamentally, the Fejér–Kalmár–Walsh theorem does not apply at all to

functions that are not holomorphic. It gives no information about the convergence or divergence

of trigonometric interpolation for functions that are merely C∞, much less those that possess only

a finite number of continuous derivatives. While interpolation in equispaced points can be shown

to converge for such functions by other means, interpolation in non-equispaced grids, even those

that are uniformly distributed, is not guaranteed even in theory without further assumptions on

the locations of the points. In these matters, as in those discussed above, the size of the Lebesgue

constants again plays an important role.

These observations were made by Trefethen and Weideman in [135], who examined the stabil-

ity of the exponential convergence of the trapezoid rule for integrating periodic functions under

perturbations of the quadrature nodes. Recall that the trapezoid rule is an interpolatory rule: it

approximates the integral of a function by that of a trigonometric interpolant to the function in a

given number of equispaced points. It converges exponentially fast as the number of points increases

when the integrand is periodic and holomorphic; we noted this fact during our brief discussion of

Cauchy integrals in Section 1.2.3. Trefethen and Weideman observe that if the equispaced points

are replaced by non-equispaced ones (but the procedure—interpolate, then integrate—is kept the

same), the convergence rate degrades3 but remains exponential. Nevertheless, they remark that

the practical utility of this fact is limited if the quadrature nodes can be arbitrarily close together,

causing the underlying interpolation problem to become poorly conditioned. They also note that

preventing the nodes from coalescing is necessary if the quadrature rule is to converge for functions

that are not holomorphic.

Similar issues arise in the related field of sampling theory, in which one takes a class of functions

defined on a given domain and seeks to reconstruct members of that class from samples of their values

on a “thin” subset of the domain. This field includes polynomial and trigonometric interpolation as

special cases but also incorporates much wider classes of problems in which the number of samples

taken need not be finite. Perhaps the most basic result of this type is the statement that band-limited

functions—functions that have limited frequency content in the sense that the supports of their

Fourier transforms are contained within [−π, π] (see Section 3.2.3)—can be recovered from knowledge
3The degradation comes from the fact that the trapezoid rule in equispaced points is not just an interpolatory

rule but a Gauss-type rule: the trapezoid rule in K = 2N + 1 equispaced points exactly integrates trigonometric
polynomials of degree 2N , not N . When non-optimal (i.e., non-equispaced) nodes are employed, this “Gauss-ness” is
lost, and the degree of accuracy is reduced to N .

58

−π π
h

αh

Figure 3.1: A perturbed equispaced grid in [−π, π]. The black dots show the perturbed points x̃k,
and the tick marks show the underlying equispaced grid xk. The shaded areas mark the subintervals
in which the perturbed points are permitted to lie for a given choice of the parameter α.

of their values at the integers: this is the famous Shannon–Whittaker–Kotel’nikov sampling theorem

[71, 126, 149], and it has many applications in signal processing and communication theory. The

reconstruction guaranteed by this theorem is stable4 in the sense that small perturbations to the

samples yield only small changes in the reconstructed function. This is an important feature for

practical applications, as samples obtained from real measurements are almost always contaminated

by noise.

A natural question to ask is to what extent the Shannon–Whittaker–Kotel’nikov result can be

extended to more general, non-uniform sampling sets. The simplest place to begin investigating this

question is with sets that are perturbations of the integers. If {λn}∞n=∞ is a sequence of real numbers

such that |λn − n| ≤ α for some α, what can we say about our ability to recover a band-limited

function F stably from knowledge of the values F (λn)? An often-quoted theorem of Kadec (see

Theorem 3.1) states that such a reconstruction is possible if α < 1/4, and, moreover, an example

due to Levinson (see (3.14)) shows that this result is sharp: if α is taken equal to 1/4, there is a

choice for the points λn such that stable reconstruction is not possible. Thus, in this setting, even

ensuring that the sample points are separated is insufficient; they must further be “well-separated”

according to Kadec’s criterion to guarantee success.

Returning to the setting of trigonometric interpolation, these observations lead us to ask several

questions. What can we say about trigonometric interpolation in grids that are uniformly distributed

but non-equispaced and that also satisfy a condition requiring the points to remain separated to

ensure numerical robustness? What approximation theorems can we prove, and what about the

corresponding quadrature scheme? Is mere separation of the points sufficient for robustness, or is

something further akin to Kadec’s 1/4 condition required as well?

In this chapter and the next, we investigate these questions for trigonometric interpolation in

perturbed equispaced points. Specifically, let K = 2N + 1 be an odd integer, K ≥ 1, let h = 2π/K,

and let

xk = kh, −N ≤ k ≤ N (3.1)

4A numerical analyst would probably prefer the term “well-conditioned” instead of “stable,” since we are describing
the reconstruction problem itself, not an algorithm for solving it. Nevertheless, we will, throughout this chapter, speak
of “stable reconstructions,” and “sets of stable sampling,” as this is the terminology used in the literature.

59

be a zero-centered grid of K equispaced points in [−π, π]. We consider points x̃k, −N ≤ k ≤ N , that

are perturbations of the points xk, where the perturbation is at most a fraction α, 0 ≤ α < 1/2,5 of

the grid spacing h:

x̃k = xk + tkh, |tk| ≤ α. (3.2)

It is easy to verify that the points x̃k are uniformly distributed in [−π, π] as K →∞. The condition

α < 1/2 ensures that they remain a minimum distance apart. For an illustration, see Figure 3.1.

Our discussion is organized as follows. After reviewing some theoretical concepts in Section

3.2 that are needed to establish context for our later remarks, in Section 3.3 we take up the task

of studying trigonometric interpolation and approximation in the perturbed equispaced grids just

described using a mixture of theory and numerical computations. Our main result is Theorem 3.6,

which provides a bound on the Lebesgue constant for these grids as the number of points increases.

The proof of this result, which is lengthy, is presented in the next chapter. We use this result to

derive theorems about approximation by trigonometric interpolants in these grids. In Section 3.4,

we numerically study the problem from the perspective of the 2-norm instead of the more usual

uniform norm and conjecture a version of Kadec’s result that applies to trigonometric interpolation,

though its practical implications seem to be minimal. Finally, in Section 3.5, we discuss Trefethen

and Weideman’s original question about trigonometric interpolatory quadrature.

Our main findings can be summarized as follows:

1. We show that the Lebesgue constant for grids of the form (3.2) grows at an algebraic rate as

K →∞ and make a conjecture as to the true growth rate in the worst case (Theorem 3.6 and

Conjecture 3.5).

2. Using this result, we prove that for all α, 0 < α < 1/2, if f has ν ≥ 1 derivatives with f (ν)

Hölder continuous with an appropriate exponent (depending on α), then its trigonometric

interpolants in a sequence of grids of the form (3.2) converge uniformly as K → ∞ (The-

orem 3.8). Larger values of ν yield more rapid convergence. For α < 1/4, f need not be

differentiable; Hölder continuity of f (again, with a suitable exponent that depends on α)

suffices for convergence. We conjecture that this is actually true for all α, 0 < α < 1/2

(Conjecture 3.7).

3. We prove a similar result and make a similar conjecture for convergence of the correspond-

ing quadrature rule (Theorem 3.12 and Conjecture 3.11). We provide numerical evidence in

support of a further conjecture that the quadrature rule converges if f is merely continuous

(Conjecture 3.14).

5Note that in this chapter and the next, the variable α has a meaning different from and completely unrelated to
the one it had in Chapter 2.

60

We believe that these are the first results for this problem to appear in the literature. Nevertheless,

we do not pretend that our work is the final word on these matters. To the contrary, as the reader

will see, there are many interesting questions that remain open for future study.

3.2 Theoretical Background

In this section, we set the stage for our discussions by recalling some concepts from sampling theory,

the theory of bases for Hilbert spaces, and the theory of non-harmonic Fourier series. We will see that

questions about the existence of bases for L2([−π, π]) consisting of non-harmonically related (and

thus generally non-orthogonal) complex exponentials are equivalent to questions about the existence

of non-equispaced interpolation schemes for a certain class of entire functions. For these schemes to

be stable, it will turn out that not just a basis but a Riesz basis is required. Our exposition has

been heavily influenced by the excellent introductory treatise of Young [154], to which we refer the

reader for proofs and further information. Other useful references include [56], [113, Ch. 19], and

[153].

3.2.1 Bases in Hilbert Space

Let X be an infinite-dimensional Hilbert space equipped with an inner product 〈·, ·〉 (semilinear in

the second factor) with accompanying norm ‖ · ‖. A sequence {xn}∞n=1 of vectors in X is said to

be a (Schauder) basis6 for X if for every x ∈ X, there is a unique sequence {cn}∞n=1 of scalars such

that the expansion

x =
∞∑

n=1

cnxn (3.3)

is valid in the topology of X. Clearly, for X to possess a basis, it must be separable. Conversely,

every separable Hilbert space possesses a basis; in fact, it possesses a basis that is orthonormal, i.e.,

that satisfies ‖xn‖ = 1 and 〈xm, xn〉 = 0 for m 6= n. It is an immediate consequence of the definition

that a basis for X is complete7 in X, i.e., its linear span is dense in X; equivalently, the only vector

x ∈ X that satisfies 〈x, xn〉 = 0 for all n is x = 0. A basis is also exact : removing any one element

from a basis yields a set that is incomplete. If {xn}∞n=1 is an orthonormal sequence in X, then it is

a basis if and only if it is complete.

Orthonormal bases are by far the most important bases, and they enjoy a number of convenient

properties. If {en}∞n=1 is an orthonormal basis for X, then the expansion (3.3) takes the form

x =
∞∑

n=1

〈x, en〉 en. (3.4)

6This is in contrast to a Hamel basis for X, which is a subset V of X such that every x ∈ X can be written
uniquely as a finite linear combination of elements of V . Using the axiom of choice, one can show that every infinite-
dimensional vector space possesses a Hamel basis (in fact, this statement is equivalent to the axiom of choice), but
these bases are of limited use even theoretically, much less practically.

7This is not to be confused with the more usual definition that a subset V of X is complete if every Cauchy
sequence in V converges in V . In the literature (especially older literature), the word “closed”, itself not free from
definitional clash, is sometimes used instead of “complete.”

61

We also have the following representation for the inner product:

〈x, y〉 =
∞∑

n=1

〈x, en〉 〈y, en〉, (3.5)

and upon taking y = x in this equation, we obtain the following representation for the norm:

‖x‖2 =
∞∑

n=1

| 〈x, en〉 |2. (3.6)

This last equation is known as Parseval’s identity.

Another important class of bases consists of those that can be obtained from orthonormal bases

via a linear transformation. We say that a basis {fn}∞n=1 is a Riesz basis for X if there is an

orthonormal basis {en}∞n=1 for X and a bounded invertible8 linear operator T on X such that fn =

Ten for each n. Every orthonormal basis is trivially a Riesz basis. The properties for orthonormal

bases given in the previous paragraph do not hold for general Riesz bases; however, in place of (3.4),

we have

x =
∞∑

n=1

〈x, gn〉 fn (3.7)

for all x ∈ X, where gn = (T ∗)−1en for each n and T ∗ denotes the adjoint of T . The sequence

{gn}∞n=1 is the unique sequence in X that is biorthogonal to {fn}∞n=1, i.e., 〈fm, gn〉 = 1 if m = n and

0 if m 6= n.9 Note that {gn}∞n=1 is itself a Riesz basis and that by exchanging the roles of {fn}∞n=1

and {gn}∞n=1, we also have the expansion

x =
∞∑

n=1

〈x, fn〉 gn. (3.8)

Combining (3.7) and (3.8), we have the following replacement for (3.5):

〈x, y〉 =
∞∑

n=1

〈x, gn〉 〈y, fn〉. (3.9)

Formulas (3.7)-(3.9) actually hold if {fn}∞n=1 is only a basis and not a Riesz basis (though the

formula given for the biorthogonal sequence {gn}∞n=1 is no longer valid; one must treat the problem

more abstractly). What sets Riesz bases apart is the following property. Multiplying (3.8) through

on the left by T ∗ and taking norms, we find

1
‖(T ∗)−1‖

‖x‖ ≤

∥∥∥∥∥
∞∑

n=1

〈x, fn〉 en

∥∥∥∥∥ ≤ ‖T ∗‖‖x‖.

Using the fact that ‖T ∗‖ = ‖T‖ and applying (3.6), we thus obtain

1
‖T−1‖2

‖x‖2 ≤
∞∑

n=1

| 〈x, fn〉 |2 ≤ ‖T‖2‖x‖2, (3.10)

8Recall that the inverse of a bounded invertible linear operator on a Hilbert space is also bounded by the open
mapping theorem.

9Proof: 〈fm, gn〉 =
˙
Tem, (T ∗)−1en

¸
=

˙
T−1Tem, en

¸
= 〈em, en〉. That {gn}∞n=1 is the only sequence in X

biorthogonal to {fn}∞n=1 follows from the fact that {fn}∞n=1 is complete: if {g′n}∞n=1 is another such sequence, then
〈fm, gn − g′n〉 = 0 for all m for each n, so gn must be equal to g′n.

62

a relaxed form of Parseval’s identity. The inequalities (3.10) show that every Riesz basis constitutes

a frame in X [32], [154, Ch. 4, §7]. More generally, a frame in X is any complete sequence {xn}∞n=1

of vectors in X for which there exist constants A,B > 0, the frame bounds, such that

A‖x‖2 ≤
∞∑

n=1

| 〈x, xn〉 |2 ≤ B‖x‖2.

for all x ∈ X. Of these two inequalities, the first is more important. We can interpret it as a

statement about the conditioning of the problem of reconstructing x from the knowledge of its

moment sequence {〈x, xn〉}∞n=1 with respect to {xn}∞n=1.
10 In effect, it says that 1/A is a Lebesgue

constant of sorts for the solution process (see Section 1.2.8).11 Similarly, the upper frame bound B

provides a quantitative measure of how much a perturbation in x can affect the size of its moments.

It turns out that a frame is a Riesz basis if and only if it is exact. Thus, a basis is a Riesz basis

if and only if it is also a frame. We can therefore think of Riesz bases informally as bases with

additional constraints that prevent them from being infinitely badly conditioned.

Before moving on, we pause to remark that the theory just presented is not trivial in that not

all bases are Riesz bases. It is easy to construct examples of bases that are not Riesz bases using

the fact that any Riesz basis {fn}∞n=1 for a Hilbert space is bounded, i.e.,

0 < inf
n≥1

‖fn‖ ≤ sup
n≥1

‖fn‖ <∞.

This is easy to prove: if {en}∞n=1 is an orthonormal basis and T is a bounded invertible linear

operator such that Ten = fn for each n, then 1/‖T−1‖ ≤ ‖fn‖ ≤ ‖T‖. As a concrete example, let

{en}∞n=1 be the standard orthonormal sequence in `2(C). The sequences {en/n}∞n=1 and {nen}∞n=1

are readily seen to be bases for `2(C), but they are not bounded and hence are not Riesz bases. It

is true that there are even bounded bases that are not Riesz bases, but these are considerably more

difficult to construct. Babenko has provided an explicit example of such a basis for L2([−π, π]) [9].

3.2.2 Non-Harmonic Fourier Series and Kadec’s 1/4 Theorem

Let us now consider the material of the preceding section in the familiar context of Fourier series in

L2([−π, π]). Taking the inner product to be the normalized one,

〈f, g〉L2([−π,π]) =
1
2π

∫ π

−π

f(x)g(x) dx, (3.11)

we recall that the sequence {einx}∞n=−∞ of harmonically-related complex exponentials is an orthonor-

mal basis for this space. Thus, for every f ∈ L2([−π, π]), we have the Fourier expansion

f(x) =
∞∑

n=−∞

〈
f, einx

〉
einx, (3.12)

10If {xn}∞n=1 is a Riesz basis, then the solution to this problem is given by the biorthogonal expansions (3.7) and
(3.8). For general frames, it can be accomplished via similar expansions using the dual frame [56, §3.3].

11More precisely, 1/A is an upper bound on a Lebesgue constant, since A can be taken arbitrarily small.

63

the series converging in L2([−π, π]).12 In (3.12), we have dropped the subscript from the inner

product to reduce clutter; we will continue to do this in what follows except where necessary for

clarity. Note also that we have made the customary abuse of notation, writing
〈
f, einx

〉
to mean

〈f, en〉, where en(x) = einx. That is, in the expression
〈
f, einx

〉
, the variable x is to be interpreted as

a dummy variable that merely indicates the independent variable in the function being considered,

not as a parameter to which a fixed value can be assigned.

It is an intriguing question to ask what happens if we consider sequences of more general complex

exponentials, i.e., if we replace {einx}∞n=−∞ with {eiλnx}∞n=−∞ for some sequence {λn}∞n=∞ of real

numbers. The new sequence will not generally be orthonormal, but it may still be a basis, in which

case each f ∈ L2([−π, π]) will have a non-harmonic Fourier expansion

f(x) =
∞∑

n=−∞
cne

iλnx (3.13)

in L2([−π, π]) for some choice of the coefficients cn uniquely determined by f . Even better, we

would like {eiλnx}∞n=−∞ to be a Riesz basis so that the expansion is not too badly conditioned in

the sense outlined in the previous section.

It is clear that not just any choice of the λn will do. For instance, if λn = 2n, then
〈
eimx, eiλnx

〉
=

0 for all odd integers m, and so {eiλnx}∞n=−∞ is not complete in L2([−π, π]). A natural place to

start investigating these matters is to restrict attention to sequences {λn}∞n=−∞ that are not “too

far” from the integers in that |λn − n| ≤ α for some α ≥ 0. How big can we take α and still be

guaranteed that {eiλnx}∞n=−∞ is a Riesz basis?

In their foundational work on non-harmonic Fourier series from 1934, Paley and Wiener showed

that {eiλnx}∞n=−∞ is a Riesz basis13 whenever |λn − n| ≤ α < 1/π2 and posed the question of

whether the constant 1/π2 could be improved [99]. In 1936, Levinson proved that the best constant

could be no larger than 1/4 by showing that the sequence {eiλnx}∞n=−∞ obtained by setting

λn =


n+ 1

4 n < 0
0 n = 0
n− 1

4 n > 0
(3.14)

is not a Riesz basis [77]; in fact, it is neither a basis nor a frame. The constant was improved

several times by different authors, notably Duffin and Eachus, who showed in 1942 that |λn − n| ≤

α < log(2)/π is sufficient and moreover showed that {eiλnx}∞n=−∞ forms a Riesz basis under these

conditions even if the λn are taken to be complex [31]. The question was finally settled by Kadec in

1964, who showed that Levinson’s upper bound of 1/4 is, in fact, optimal [66]:

12A result of Carleson [19] shows that the expansion also holds pointwise almost everywhere in [−π, π], but we will
not need this fact.

13The term “Riesz basis” did not exist in Paley and Wiener’s time and therefore does not appear in their writing;
however, their results have been reinterpreted in terms of Riesz bases by later scholars. (For instance, Kadec does
this in the opening paragraph of [66].)

64

Theorem 3.1 (Kadec’s 1/4 theorem). If {λn}∞n=−∞ is a sequence of real numbers such that |λn −

n| ≤ α < 1/4 for each n, then {eiλnx}∞n=−∞ is a Riesz basis for L2([−π, π]).

3.2.3 The Paley–Wiener Theorem

The preceding discussions may seem to have taken us far from our original topic of interpolation,

but we will see shortly that they are actually highly relevant. First, we observe that if {eiλnx}∞n=−∞

is a basis for L2([−π, π]), it must, at a minimum, be complete. Thus, it must be true that if

f ∈ L2([−π, π]), and if
1
2π

∫ π

−π

f(x)e−iλnx dx = 0, n ∈ Z, (3.15)

then f = 0 almost everywhere.

The key observation is the following. If f ∈ L2([−π, π]), then the function F : C → C defined by

F (z) =
1
2π

∫ π

−π

f(x)e−izx dx (3.16)

is an entire function14 and satisfies a bound of the form

|F (z)| ≤ Ceπ|z| (3.17)

for some constant C > 0 that depends on F but not z; we say that F is of exponential type at most π.

It is a fundamental fact that the rate of growth of an entire function and the distribution of its zeros

are intimately connected; a restriction on one places a corresponding restriction on the other. As

the conditions (3.15) are exactly the requirement that F (λn) = 0 for each n, we see that questions

about the completeness of sequences of complex exponentials in L2([−π, π]) are equivalent to ones

about which sequences in C are admissible as zero sets of entire functions satisfying the growth

bound (3.17). To be more explicit, if {eiλnx}∞n=−∞ is not complete, then by taking a function

f ∈ L2([−π, π]) that satisfies (3.15) but that is not almost everywhere zero and using (3.16), we

obtain an entire function of exponential type at most π that is not identically zero and that has

zeros at each of the points λn.

Even more is true, however, because (3.16) defines F by taking the Fourier transform of a

function in L2(R), the support of which is contained in [−π, π]. By Plancherel’s theorem [113, p.

186], F ∈ L2(R), and ‖f‖L2([−π,π]) = ‖F‖L2(R), where the inner product on L2(R) is defined as

usual by

〈f, g〉L2(R) =
∫ ∞

−∞
f(x)g(x) dx.

The correspondence f 7→ F given by (3.16) thus defines an isometry15 of L2([−π, π]) into the

subspace of L2(R) consisting of all entire functions in L2(R) that are of exponential type at most π.

The crucial insight of Paley and Wiener is that this map is actually onto: every function belonging

to this subspace of L2(R) can be obtained via the Fourier transform in this way [99].
14Proof: Apply Morera’s theorem [113, p. 208].
15Note that this statement depends on our use of the normalized inner product (3.11) on L2([−π, π]).

65

Theorem 3.2 (Paley–Wiener theorem). If F is an entire function of exponential type at most π

belonging to L2(R), then there is a function f ∈ L2([−π, π]) such that F and f are related by (3.16).

The space of entire functions of exponential type at most π that belong to L2(R) is called the

Paley–Wiener space and will be denoted by PWπ. The Paley–Wiener theorem can be concisely sum-

marized as saying that the Fourier transform defines an isometric isomorphism between L2([−π, π])

and PWπ. In particular, note that it implies that the support of the Fourier transform of every

function in PWπ is contained in [−π, π]. If we view PWπ as the “time domain” and L2([−π, π])

as the “frequency domain”, this says that a function in PWπ has no frequency content beyond ±π.

Because of this, in the engineering literature, PWπ is often referred to as the space of functions in

L2(R) that are band-limited to π.

3.2.4 Interpolation in PWπ

We now have all we need to establish a link between the theory of non-harmonic Fourier series and

interpolation. The Paley–Wiener theorem allows us to take questions and results about L2([−π, π])

and turn them into ones about PWπ. In particular, any basis expansion in L2([−π, π]) yields an

equivalent one in PWπ. Consider the classic Fourier expansion (3.12). If F is the Fourier transform

of f obtained via (3.16), then since F (n) =
〈
f, einx

〉
, and since the Fourier transform of einx is

1
2π

∫ π

−π

einxe−izx dx =
sin
(
π(z − n)

)
π(z − n)

,

we immediately obtain the equivalent expansion

F (z) =
∞∑

n=−∞
F (n)

sin
(
π(z − n)

)
π(z − n)

(3.18)

in PWπ regarded as a subspace of L2(R).16 Thus, we see that any F ∈ PWπ can be reconstructed

from its values at the integers via the formula (3.18), which we view as a Lagrange-type interpolation

formula; this result is the Shannon–Whittaker–Kotel’nikov theorem mentioned in Section 3.1. The

series (3.18) is sometimes called the cardinal series for F ∈ PWπ. Observe that the basis element

sin
(
π(z−n)

)
/
(
π(z−n)

)
behaves like a Lagrange basis function for the integer n in that it takes on

the value 1 at z = n and vanishes at every other integer.

What about the more general expansion (3.13)? Taking its Fourier transform will not yield

anything immediately recognizable since the coefficients in the expansion are not the inner products

of f with the complex exponentials {eiλnx}∞n=−∞. If, however, we let {gn(x)}∞n=−∞ be the sequence

in L2([−π, π]) that is biorthogonal to {eiλnx}∞n=−∞, then we have the dual expansion

f(x) =
∞∑

n=−∞

〈
f, eiλnx

〉
gn(x),

16It is easy to show further via a simple estimate that the series converges uniformly on R [154, p. 90].

66

in L2([−π, π]), and we can take the Fourier transform of this to obtain

F (z) =
∞∑

n=−∞
F (λn)Gn(z),

in PWπ, whereGn is the Fourier transform of gn. This, too, is a Lagrange-type interpolation formula,

but the interpolation points are no longer necessarily uniformly spaced. Notice that Gn(λm) =〈
gn, e

iλmx
〉
, so Gn takes on the value 1 at λn and is 0 at λm for m 6= n.

If {eiλnx}∞n=−∞ is not just a basis but a Riesz basis, we can say something further. By (3.10),

there are constants A,B > 0 such that

A‖f‖2
L2([−π,π]) ≤

∞∑
n=1

|
〈
f, eiλnx

〉
|2 ≤ B‖f‖2

L2([−π,π])

for all f ∈ L2([−π, π]). Taking Fourier transforms, this becomes

A‖F‖2
L2(R) ≤

∞∑
n=1

|F (λn)|2 ≤ B‖F‖2
L2(R) (3.19)

for all F ∈ PWπ. Informally, the first of the inequalities in (3.19) says that there cannot be much

more “energy” in the samples of F at the points λn than there is in F itself, a condition which is

usually interpreted in the engineering literature as saying that small errors in the samples cannot

be magnified into large errors in the reconstructed function. Because of this, a sequence {λn}∞n=−∞

that satisfies such an inequality is often called a set of stable sampling for PWπ [56, Ch. 10] [152].

Kadec’s 1/4 theorem (Theorem 3.1) gives a simple condition sufficient to ensure that a given

sequence {λn}∞n=−∞ is a set of stable sampling for PWπ: require that |λn − n| ≤ α < 1/4 for some

α ≥ 0. It is clear that this condition is merely sufficient, not necessary: setting λn = n + 1, for

instance, we have {λn}∞n=−∞ = Z. Nevertheless, Levinson’s example (3.14) shows that if Kadec’s

condition is violated, there is no guarantee that {λn}∞n=−∞ will be a set of stable sampling in general.

The problem of characterizing those sequences that yield sets of stable sampling for PWπ at-

tracted the attention of several mathematicians in the second half of the 20th century. In 1979,

Pavlov made an important advance by establishing a necessary and sufficient condition for a set of

complex exponentials to form a Riesz basis for L2([−π, π]) [102]. The problem was finally solved in

2002 by Ortega-Cerdà and Seip, who derived a necessary and sufficient condition for a set of complex

exponentials to form a frame in L2([−π, π]) [93].

3.2.5 Relationship with Trigonometric Interpolation

We conclude this introductory section with a brief discussion of the parallels between the continu-

ous (infinite-dimensional) problem of interpolation in PWπ just discussed and the discrete (finite-

dimensional) problem of trigonometric interpolation that is the focus of our work. These relationships

are well-studied, and discussions can be found in most textbooks on signal processing.

67

Let TN ([−π, π]) be the space of 2π-periodic trigonometric polynomials of degree N , regarded as a

finite-dimensional subspace of L2([−π, π]). That is, we endow it with an inner product 〈·, ·〉TN ([−π,π])

formed by restricting to TN ([−π, π])×TN ([−π, π]) the inner product on L2([−π, π]) defined by (3.11).

It can be shown that in addition to (3.11), 〈·, ·〉TN ([−π,π]) can be computed via the sum17

〈f, g〉TN ([−π,π]) =
1
K

N∑
k=−N

f

(
k

2π
K

)
g

(
k

2π
K

)
. (3.20)

Moreover, for f ∈ TN ([−π, π]), the expansion (3.12) takes the form

f(x) =
N∑

k=−N

〈
f, eikx

〉
TN ([−π,π])

eikx. (3.21)

The appropriate analogue of the Fourier transform (3.16) in this setting is

F (z) =
1
K

N∑
k=−N

f

(
k

2π
K

)
e−ik 2π

K z (3.22)

for f ∈ TN ([−π, π]). The transformed function F is a trigonometric polynomial of degree at most

N but of period K instead of 2π. We denote the space of such trigonometric polynomials by

TN ([−K/2,K/2]) and regard it as a subspace of L2([−K/2,K/2]), where the inner product on the

latter is taken to be

〈F,G〉L2([−K/2,K/2]) =
∫ K/2

−K/2

F (x)G(x) dx.

This definition for the inner product makes the map f 7→ F from TN ([−π, π]) to TN ([−K/2,K/2])

defined by (3.22) an isometry. Denoting the restriction of this inner product to TN ([−K/2,K/2])×

TN ([−K/2,K/2]) by 〈·, ·〉TN ([−K/2,K/2]), we have, in analogy to (3.20),

〈F,G〉TN ([−K/2,K/2]) =
N∑

k=−N

F (k)G(k).

Taking the transform of einx, we have

1
K

N∑
k=−N

eink 2π
K e−ik 2π

K z =
sin
(
π(n− z)

)
K sin

(
π
K (n− z)

) .
Therefore, taking the transform of (3.21), we obtain

F (z) =
N∑

k=−N

F (k)
sin
(
π(z − k)

)
K sin

(
π
K (z − k)

) ,
which is a discrete version of (3.18) and a Lagrange-type formula for TN ([−K/2,K/2]); this result

should be compared with the barycentric formula (1.27).

For easy comparison, these formulas are given alongside their infinite-dimensional counterparts

in Figure 3.2.
17This sum is just the trapezoid rule in the points (3.1) (i.e., the midpoint rule), which is exact for all trigonometric

polynomials of degree at most 2N .

68

continuous

discrete

f(x) =
∞X

k=−∞

D
f, eikx

E
eikx

Fourier series

〈f, g〉 =
1

2π

Z π

−π
f(x)g(x) dx

L2([−π, π])

F (z) =
1

2π

Z π

−π
f(x)e−ixz dx

Fourier transform

F (z) =
∞X

k=−∞
F (k)

sin
`
π(z − k)

´
π(z − k)

cardinal series

〈F, G〉 =

Z ∞

−∞
F (x)G(x) dx

PWπ

TN ([−π, π])

f(x) =
NX

k=−N

D
f, eikx

E
eikx

trigonometric polynomial
(2π-periodic, Fourier form)

〈f, g〉 =
1

K

NX
k=−N

f

„
k

2π

K

«
g

„
k

2π

K

«
F (z) =

1

K

NX
k=−N

f

„
k

2π

K

«
e−ik 2π

K
z

discrete Fourier transform

TN ([−K/2, K/2])

F (z) =
NX

k=−N

F (k)
sin

`
π(z − k)

´
K sin

`
π
K

(z − k)
´

trigonometric polynomial
(K-periodic, Lagrange form)

〈F, G〉 =
NX

k=−N

F (k)G(k)

Figure 3.2: Summary of the relationships between the problem of interpolation in PWπ

(continuous/infinite-dimensional; see Section 3.2.4) and trigonometric interpolation (discrete/finite-
dimensional). The subscripts on the inner products have been suppressed to reduce clutter.

3.3 Trigonometric Interpolation and Approximation on Per-
turbed Equispaced Grids

We now turn to our main objective: a study of the properties of trigonometric interpolation in the

perturbed points (3.2). As mentioned in Section 3.1, our goal is to obtain an understanding of

the behavior of the Lebesgue constant, which we will denote by Λ̃K , as the number of points K

increases. In particular, we would like to find an upper bound for Λ̃K , as this will allow us to bound

the interpolation error in the worst case.

We begin by investigating Λ̃K numerically. Our work will lead to several conjectures for which

the evidence is compelling (Conjectures 3.3, 3.4, and 3.5). Although we have not proved these

statements, we are able to prove a slightly weaker result (Theorem 3.6) that suffices to establish

rigorously the main characteristics of trigonometric interpolation in grids of the form (3.2).

Recall from Sections 1.2.8 and 1.3.3 that Λ̃K is given by

Λ̃K = sup
x∈[−π,π]

L̃(x), (3.23)

where L̃(x) is the Lebesgue function

L̃(x) =
N∑

k=−N

|˜̀k(x)|, (3.24)

69

and the ˜̀k are the Lagrange basis functions for the perturbed grid defined by (1.25):

˜̀
k(x) =

N∏
j=−N
j 6=k

sin
(

x−exj

2

)
sin
(exk−exj

2

) . (3.25)

We can approximate Λ̃K for a particular choice of the points x̃j easily by using Chebfun (see Section

1.5) to construct a high-accuracy numerical approximation to L̃ and computing the maximum of

this approximation. In fact, Chebfun contains a function lebesgue for doing just this.18

3.3.1 The “Worst” Grid

Initially, exploring this problem seems intimidating because of the large size of the parameter space.

For 0 < α < 1/2, each point x̃j can take on a continuum of possible values, and it is not at all

obvious which configuration yields the largest value for Λ̃K . Our first task is to simplify things by

trying to determine this value numerically.

We therefore perform the following simple experiment. Fix values for α and K. Assuming

that Λ̃K will be maximized for a configuration in which all points have been maximally perturbed

(i.e., perturbed by an amount αh in one direction or the other), we compute Λ̃K numerically using

Chebfun for each such grid and see which yields the largest value. The validity of this assumption

is not self-evident; however, numerical tests (the results of which we do not report here) strongly

suggest that it is true. Because the number of grids grows exponentially in the number of points, such

an exhaustive search is feasible only for very small K. Nevertheless, we can improve the situation a

bit by taking advantage of symmetry19 to reduce the number of cases we must consider.

The results of this experiment for K = 3, 5, 7, and 9 are presented in Table 3.1. The first column

of the table shows the perturbation pattern of the points for the grid being considered; a -1 means

that the point was perturbed to the left by αh, and a +1 means that it was perturbed to the right.

The pattern -1 -1 +1 corresponds to the grid of length K = 3 with x̃−1 = x1 − αh, x̃0 = x0 − αh,

and x̃1 = x1 + αh, and similarly for the rest. The remaining columns show the computed value of

the Lebesgue constant for the indicated grid for seven different values of α between 0 and 1/2. Bold

values denote the value of Λ̃K that is largest for each combination of K and α.

Examining these results, we observe that one particular choice of grid consistently yields the

largest value of Λ̃K for all choices of K and α: the grid that shifts all points xk with k ≤ 0 to

the right and all those with k > 0 to the left; see Figure 3.3 for an illustration. Running the

experiment further for all odd values of K up to 17 and for α = 1/32, 2/32, . . . , 15/32, we observe

18Readers familiar with Chebfun may recall that the lebesgue function is usually used for computing Lebesgue
functions and constants for polynomial interpolation. As of Chebfun v5.5.0, it can do so trigonometric interpolation
as well.

19It is clear that given a choice of the points exj , the Lebesgue constant eΛK does not change if the points are
reflected across the origin or circularly shifted by a fixed amount.

70

Pattern α = 1/16 α = 1/8 α = 3/16 α = 1/4 α = 5/16 α = 3/8 α = 7/16

+1 +1 +1 1.66667 1.66667 1.66667 1.66667 1.66667 1.66667 1.66667
+1 +1 -1 1.89848 2.21034 2.64922 3.30940 4.41122 6.61612 13.23192

+1 +1 +1 +1 +1 1.98885 1.98885 1.98885 1.98885 1.98885 1.98885 1.98885
+1 +1 +1 +1 -1 2.30507 2.71576 3.27366 4.08501 5.39856 7.96187 15.51585
+1 +1 +1 -1 -1 2.36286 2.87899 3.62286 4.76655 6.71269 10.67105 22.69486
+1 +1 -1 +1 -1 2.31056 2.74335 3.35316 4.27223 5.80942 8.89183 18.15595

+1 +1 +1 +1 +1 +1 +1 2.20221 2.20221 2.20221 2.20221 2.20221 2.20221 2.20221
+1 +1 +1 +1 +1 +1 -1 2.57381 3.04668 3.67480 4.56728 5.98030 8.68510 16.54551
+1 +1 +1 +1 +1 -1 -1 2.65752 3.28219 4.17555 5.53656 7.82965 12.44838 26.36087
+1 +1 +1 +1 -1 +1 -1 2.60334 3.13796 3.88265 4.99082 6.82065 10.44669 21.24155
+1 +1 +1 +1 -1 -1 -1 2.68500 3.36477 4.36361 5.92744 8.63280 14.21426 31.35700
+1 +1 +1 -1 +1 +1 -1 2.57980 3.07703 3.76268 4.77482 6.43607 9.71468 19.45258
+1 +1 +1 -1 +1 -1 -1 2.66035 3.29742 4.22262 5.65547 8.10999 13.13118 28.45159
+1 +1 +1 -1 -1 +1 -1 2.60672 3.15539 3.93423 5.11569 7.10270 11.10484 23.17187
+1 +1 -1 +1 +1 -1 -1 2.63636 3.23361 4.09258 5.41136 7.65337 12.21095 26.05076
+1 +1 -1 +1 -1 +1 -1 2.58367 3.09651 3.81912 4.90855 6.73170 10.38981 21.39036

+1 +1 +1 +1 +1 +1 +1 +1 +1 2.36186 2.36186 2.36186 2.36186 2.36186 2.36186 2.36186
+1 +1 +1 +1 +1 +1 +1 +1 -1 2.77491 3.29361 3.97212 4.92039 6.39717 9.18265 17.19031
+1 +1 +1 +1 +1 +1 +1 -1 -1 2.87655 3.57775 4.57144 6.06898 8.56250 13.52639 28.32782
+1 +1 +1 +1 +1 +1 -1 +1 -1 2.81671 3.41728 4.24427 5.45905 7.43807 11.31004 22.71693
+1 +1 +1 +1 +1 +1 -1 -1 -1 2.91807 3.70286 4.85661 6.66134 9.77693 16.18615 35.81050
+1 +1 +1 +1 +1 -1 +1 +1 -1 2.79413 3.35740 4.12404 5.23926 7.04229 10.55111 20.85600
+1 +1 +1 +1 +1 -1 +1 -1 -1 2.89450 3.63689 4.71564 6.38467 9.23746 15.05612 32.75500
+1 +1 +1 +1 +1 -1 -1 +1 -1 2.83456 3.47497 4.38126 5.74998 8.03988 12.62722 26.39301
+1 +1 +1 +1 +1 -1 -1 -1 -1 2.93448 3.75412 4.97804 6.92398 10.33865 17.47222 39.60129
+1 +1 +1 +1 -1 +1 +1 +1 -1 2.78059 3.32246 4.05582 5.11814 6.83088 10.15919 19.93035
+1 +1 +1 +1 -1 +1 +1 -1 -1 2.88016 3.59739 4.63261 6.22455 8.93107 14.42708 31.09009
+1 +1 +1 +1 -1 +1 -1 +1 -1 2.82069 3.43806 4.30644 5.61103 7.78419 12.12316 25.11405
+1 +1 +1 +1 -1 +1 -1 -1 -1 2.91982 3.71264 4.88810 6.74433 9.98110 16.70541 37.47177
+1 +1 +1 +1 -1 -1 +1 +1 -1 2.84422 3.50252 4.44133 5.87042 8.28010 13.14268 27.82298
+1 +1 +1 +1 -1 -1 +1 -1 -1 2.89644 3.64756 4.74929 6.47152 9.44673 15.57729 34.38758
+1 +1 +1 +1 -1 -1 -1 +1 -1 2.83692 3.48742 4.41886 5.84295 8.25447 13.13928 27.93004
+1 +1 +1 -1 +1 +1 +1 -1 -1 2.86622 3.56004 4.55618 6.08107 8.66380 13.89300 29.71489
+1 +1 +1 -1 +1 +1 -1 +1 -1 2.80729 3.40354 4.23864 5.48900 7.56655 11.70748 24.09314
+1 +1 +1 -1 +1 +1 -1 -1 -1 2.90539 3.67244 4.80234 6.57575 9.65092 16.00858 35.56768
+1 +1 +1 -1 +1 -1 +1 +1 -1 2.78618 3.35066 4.13754 5.31169 7.25825 11.13321 22.71763
+1 +1 +1 -1 +1 -1 +1 -1 -1 2.88226 3.60876 4.66800 6.31467 9.14531 14.95344 32.71652
+1 +1 +1 -1 +1 -1 -1 +1 -1 2.82328 3.45153 4.34659 5.70901 8.00742 12.64883 26.67104
+1 +1 +1 -1 -1 +1 +1 -1 -1 2.86813 3.57026 4.58775 6.16074 8.85138 14.34931 31.11039
+1 +1 +1 -1 -1 +1 -1 +1 -1 2.80961 3.41553 4.27416 5.57505 7.76107 12.16182 25.42726
+1 +1 +1 -1 -1 +1 -1 -1 -1 2.90539 3.67244 4.80234 6.57575 9.65092 16.00858 35.56768
+1 +1 -1 +1 +1 -1 +1 +1 -1 2.76437 3.29441 4.02699 5.11261 6.90293 10.45351 21.04307
+1 +1 -1 +1 +1 -1 +1 -1 -1 2.85976 3.54848 4.54420 6.08041 8.70345 14.05523 30.35210
+1 +1 -1 +1 +1 -1 -1 +1 -1 2.80169 3.39602 4.23723 5.51050 7.64844 11.94959 24.90841
+1 +1 -1 +1 -1 +1 +1 -1 -1 2.84587 3.51128 4.46801 5.93677 8.43398 13.51113 28.93132
+1 +1 -1 +1 -1 +1 -1 +1 -1 2.78825 3.36123 4.16842 5.38542 7.42241 11.51058 23.80737

Table 3.1: Results of the experiment of Section 3.3.1 for identifying a likely candidate for the choice
of points x̃k that yields the largest value of Λ̃K for a given K and α. The first column displays
the perturbation pattern; a -1 (respectively, +1) means that the point was perturbed to the left
(respectively, right) by the maximum amount of αh. The other columns show the numerically
computed value of Λ̃K for several values of α between 0 and 1/2. Bold values indicate the largest
value of Λ̃K for a given choice of K and α. Observe that the grid (3.26) yields the largest value of
Λ̃K in all cases.

71

−π π

Figure 3.3: Illustration of the “worst” grid, a configuration of points that seems particularly likely
to maximize the Lebesgue constant Λ̃K over all choices of x̃k for given values of α and K.

the same results. Moreover, we observe that this grid pattern is the unique one (up to the symmetries

identified in the footnote) that gives this maximum.

On the basis of this evidence, we make the following conjecture:

Conjecture 3.3. For given values of α and K, 0 < α < 1/2, the choice of the points x̃k that

maximizes Λ̃K is

x̃k =

{
xk + αh −N ≤ k ≤ −1,
xk − αh 0 ≤ k ≤ N,

(3.26)

uniquely, up to symmetry.

At present, we are unable to prove this statement; nevertheless, for convenience, we will refer

to the grid defined by (3.26) as the “worst” grid from this point forward. We note that this grid

is similar in structure to the grid used to construct Levinson’s example (3.14). In our setting, an

appropriate analogue of Levinson’s example is the grid

x̃k =


xk + αh −N ≤ k ≤ −1,
0 k = 0,
xk − αh 1 ≤ k ≤ N,

(3.27)

which is the same as (3.26) but with the point at 0 left unperturbed.

3.3.2 Asymptotic Behavior of the Lebesgue Constant

With a good candidate for the grid that yields the largest value of Λ̃K in hand, we next examine

the asymptotic behavior of this hypothetically worst-case Lebesgue constant as K → ∞. We are

particularly interested in understanding how the asymptotic behavior of Λ̃K varies with α, as this

will tell us how the non-uniformity of the grid impacts our ability to use interpolants over it to

approximate functions.

In order to see a clear trend, we will need to compute Λ̃K for values of K up to at least several

thousand. Unfortunately, the approach used in the computations of the last section based on Chebfun

does not scale well to large values of K. We work around this by using the following empirical

observation. Consider Figure 3.4, which plots L̃(x) for the “worst” grid (3.26) for a given value of

K and several values of α. Notice that L̃ assumes its maximum value on [−π, π] at the endpoints

72

-3 -2 -1 0 1 2 3

5

10

15

20

25
, = 1/8
, = 1/4
, = 3/8

Figure 3.4: Plot of the Lebesgue function (3.24) on [−π, π] for the grid (3.26) for K = 11 and
α = 1/8, 1/4, and 3/8. Note that the maximum value, the Lebesgue constant Λ̃K , is attained at
the interval endpoints ±π in all three cases.

±π in each of the three cases. Using Chebfun, we confirm numerically that this happens not just for

the examples shown but for all odd values of K with 3 ≤ K ≤ 201 and α = 1/64, 2/64, . . . , 31/64.

From this, it is reasonable to guess that this happens for all choices of α and K, and we are thus

led to make the following conjecture:

Conjecture 3.4. For 0 < α < 1/2, and any odd K ≥ 1, the Lebesgue function for the grid (3.26)

assumes its maximum value on [−π, π] at exactly the points ±π.

If this conjecture holds, then evaluating Λ̃K for a particular instance of (3.26) is easy, since all we

have to do is compute L̃(±π). Presently, we are not able to prove this statement; however, assuming

that it is true, we obtain the plots of Λ̃K for (3.26) shown in Figure 3.5. Looking at Figure 3.5a,

we see that, for a fixed value of α, the Lebesgue constant for this grid appears to grow with K at

a rate that is at most algebraic in K. Moreover, the asymptotic rate appears to increase as α gets

closer to 1/2. Estimating roughly by eye, it appears that the growth rate is approximately O(K1/2)

for α = 1/4 (the thick black line) and that it approaches O(K) as α approaches 1/2. The trend for

α = 1/4 is confirmed in Figure 3.5b, which plots Λ̃K/
√
K against K. Observe that on this plot, the

line for α = 1/4 appears to remain bounded as K becomes large.

We further observe that in Figure 3.5a, not only does the asymptotic growth rate vary with α

but so does the spacing between the lines: for a fixed value of K, the amount of vertical space

between the lines corresponding to successive values of α increases as α increases towards 1/2. This

trend is expected, since as α approaches 1/2, the points x̃0 and x̃1 in (3.26) become arbitrarily close

together, so Λ̃K becomes unbounded. To quantify the rate at which this occurs, we plot Λ̃K for

(3.26) against 1/2 − α for several fixed values of K. The results are shown in Figure 3.6, which

makes it clear that Λ̃K blows up at a rate of O
(
1/(1/2− α)

)
as α→ 1/2.

73

10 1 10 2 10 3 10 4

Grid Size (K)

10 0

10 1

10 2

10 3

10 4

10 5

Le
be

sg
ue

 C
on

st
an

t

(a)

10 1 10 2 10 3 10 4

Grid Size (K)

10 -2

10 -1

10 0

10 1

10 2

10 3

(L
eb

es
gu

e
C

on
st

an
t)

/s
qr

t(
K

)

(b)

Figure 3.5: (a) Numerically computed values of Λ̃K for the grid (3.26) as a function of K for several
values of K between 3 and 10,103 and for α = 1/32, 2/32, . . . , 15/32. Lower lines correspond to
lower values of α. The thick black line corresponds to α = 1/4. (b) Same as (a) but plots Λ̃K/

√
K

against K. Notice that the line for Λ̃K/
√
K for α = 1/4 appears to remain bounded as K becomes

large, suggesting that Λ̃K = O(K1/2) for that value of α. These plots were made by evaluating
L̃(−π) and thus are only valid assuming that Conjecture 3.4 holds. If that conjecture is false, the
plots show lower bounds for Λ̃K instead.

10 -1010 -510 0

1=2! ,

10 0

10 5

10 10

10 15

Le
be

sg
ue

 C
on

st
an

t

K = 11
K = 21
K = 51
K = 101
K = 201
K = 501
K = 1001

Figure 3.6: Numerically computed values of Λ̃K for the grid (3.26) as a function of 1/2−α for several
fixed values of K. Note that the orientation of the horizontal axis has been reversed. The dashed
black line depicts 1/(1/2 − α). As with the previous figure, these computations were performed
assuming that Conjecture 3.4 is true. If it is false, the plots show lower bounds for Λ̃K instead.

74

Taken together with Conjecture 3.3, this evidence leads us to make the following conjecture about

the Lebesgue constant Λ̃K for any grid of the general type (3.2) that we have been considering:

Conjecture 3.5. There are absolute constants A and B such that for 0 < α < 1/2 and sufficiently

large K, the Lebesgue constant Λ̃K for any grid of the form (3.2) satisfies

Λ̃K ≤ 1
1− 2α

(
A
K2α − 1

α
+B

)
.

Thus,

Λ̃K = O

(
K2α − 1
α(1− 2α)

)
K→∞

,

with the implied constant in the big-O symbol independent both of α and of the choice of the perturbed

points x̃k. When the x̃k are chosen according to (3.26), this bound is attained in the sense that the

big-O symbol cannot be replaced by a small-o symbol.

Note that this statement captures the hypothesized O(K1/2) behavior for α = 1/4 and that it

also tends to O(K) as α → 1/2. Moreover, the multiplying constant blows up as α → 1/2 in line

with the trend observed in Figure 3.6. The reason for the subtracting 1 in the numerator and adding

a factor of α in the denominator is that these adjustments cause the bound to exhibit the correct

O(logK) behavior in the limit as α→ 0, since

lim
α→0

K2α − 1
α

= lim
α→0

2K2α logK
1

= 2 logK

by l’Hopital’s rule.20 Ignoring these considerations and treating α as fixed and nonzero (as we

assume), we may of course write the bound expressed by the second statement in the conjecture as

Λ̃K = O

(
K2α

α(1− 2α)

)
K→∞

with the understanding that the reason the right-hand side blows up as α → 0 is because if it did

not, then continuity would give Λ̃K = O(1) as K → ∞ as α → 0, contradicting the true limiting

behavior of O(logK).

Unfortunately, we are not able to prove Conjecture 3.5 at this time. What we can prove is the

following result, for which the exponent is off by only a factor of 2, and the dependence on α in the

denominator is unchanged:

Theorem 3.6. There are absolute constants A and B such that for 0 < α < 1/2 and sufficiently

large K, the Lebesgue constant Λ̃K for any grid of the form (3.2) satisfies

Λ̃K ≤ 1
1− 2α

(
A
K4α − 1

α
+B

)
.

Thus,

Λ̃K = O

(
K4α − 1
α(1− 2α)

)
K→∞

,

20The author is indebted to Andrew Thompson for this observation.

75

0 10 20 30 40 50 60
K

10 -20

10 -15

10 -10

10 -5

10 0

E
rr

or
equispaced
, = 0.1
, = 0.4
, = 0.49
random
best

Figure 3.7: Numerically computed infinity-norm errors in the trigonometric interpolants to f(x) =
esin(2x) in five different grids of length K for various values of K: equispaced points (blue crosses),
the “worst” grid (3.26) with α = 0.1 (orange stars), α = 0.4 (gold pluses), α = 0.49 (purple squares),
and random points drawn from a uniform distribution on [−π, π] (green diamonds). Also plotted are
the errors in the best (trigonometric) approximations (light blue dots) of the corresponding degrees.

with the implied constant in the big-O symbol independent both of α and of the choice of the perturbed

points x̃k.

The proof of this theorem is the subject of the next chapter.

The important observation to make about the bounds on Λ̃K given by Conjecture 3.5 and Theo-

rem 3.6 is that the growth they predict is modest. We conclude that interpolation in these grids will

converge (in exact arithmetic) for functions that are merely smooth, not holomorphic. Precise state-

ments about the level of smoothness that is required are given in Conjecture 3.7 and Theorem 3.8

below.

Moreover, the interpolation scheme will be well-behaved in the presence of rounding errors,

provided that α is not so close to 1/2 that the constant in the bounds becomes a problem. This

is illustrated in Figure 3.7, which examines the convergence as K increases of the trigonometric

interpolants to the function f(x) = esin(2x) in five different grids in [−π, π]: equispaced points, the

“worst” grid (3.26) for α = 0.1, 0.4, and 0.49, and a grid of random points drawn from a uniform

distribution on [−π, π]. In addition to the infinity-norm errors in the interpolants, we plot the

infinity-norm error in the best approximation to f from TN for each K. (Recall that the number of

points K and the degree N of the interpolant are related by K = 2N + 1.) All approximations were

computed numerically using Chebfun.

True to its name, the best approximation gives the lowest values for the error, but the inter-

polants in equispaced points and in (3.26) with α = 0.1 are virtually indistinguishable from it. The

interpolants for α = 0.4 and α = 0.49 are not much worse. The error in the interpolants in random

points initially decays similarly to the others, albeit less steadily, but eventually bottoms out at

around K = 41, after which it begins to increase. The random points are uniformly distributed, and

76

f is entire. In theory, the interpolants in these points should converge without trouble; however,

the large Lebesgue constants (for the random grid of length K = 41 in the example, the Lebesgue

constant is on the order of 108) prevent this convergence from taking place in practice.

3.3.3 Approximation Theorems

Having a bound on the Lebesgue constant for interpolation in grids of the form (3.2) enables us

to make precise statements about the circumstances under which interpolation in a system of such

grids will converge as the number of points increases. To the best of our knowledge, these are the

first results to have been established for this problem.

When it comes to interpolation of holomorphic functions, Conjecture 3.5 and Theorem 3.6 do not

tell us anything new about convergence, which is already assured for our perturbed equispaced grids

by the Fejér–Kalmár–Walsh theorem (Theorem 1.12). What they do tell us is that this convergence

is robust against rounding error, which is not true for more general uniformly distributed grids, as

we have already remarked. The example considered at the end of the previous section attests to this

robustness.

From a theoretical point of view, the value of Conjecture 3.5 and Theorem 3.6 is that they enable

us to make assertions about the convergence of the interpolants for functions that are less smooth.

This is accomplished by combining them with the trigonometric versions of Jackson’s theorems

(Theorem 1.2) and Theorem 1.13. In more detail, if f is a continuous periodic function on [−π, π],

and if tN ∈ TN is the trigonometric interpolant to f of degree N in the K = 2N + 1 points (3.2),

then the trigonometric analogue of Theorem 1.13 tells us that

‖f − tN‖∞ ≤ (1 + Λ̃K)‖f − t∗N‖∞,

where t∗N is the best approximation to f from TN . (Here, ‖ · ‖∞ denotes the supremum norm on

the space of continuous periodic functions on [−π, π].) Since we can bound ‖f − t∗N‖∞ under some

additional assumptions on the regularity of f using the trigonometric versions of Jackson’s theorems,

a bound on Λ̃K automatically implies a bound on ‖f − tN‖∞. If Λ̃K grows more slowly as K →∞

than the rate at which ‖f − t∗N‖∞ decays to zero21 then we will get uniform convergence of tN to f

as K →∞.

Assuming Conjecture 3.5 holds, the following result is an immediate consequence of the trigono-

metric version of Theorem 1.4:

Conjecture 3.7. Let 0 < α < 1/2, and suppose that f is a 2π-periodic, ν-times continuously

differentiable function, ν ≥ 0, such that f (ν) is Hölder continuous on [−π, π] with exponent γ,

21Note that ‖f−t∗N‖ decays to zero as K →∞ for any continuous f by the trigonometric version of the Weierstrass
approximation theorem. (See Theorem 1.1 and the discussion of the analogies between trigonometric and polynomial
approximation in Section 1.3.1. See also [69, p. 16] and [147].)

77

2α < γ ≤ 1. If tN is the trigonometric interpolant to f of degree N in the K = 2N + 1 perturbed

points (3.2), then tN converges to f uniformly on [−π, π] at the rate

‖f − tN‖∞ = O

(
K2α − 1
α(1− 2α)

K−ν−γ

)
K→∞

,

with the implied constant in the big-O symbol independent both of α and of the choice of the perturbed

points x̃k.

Combining Theorems 3.6 and 1.4 instead, we obtain the following result, which is weaker but

which we can prove rather than merely conjecture:

Theorem 3.8. Let 0 < α < 1/2, and suppose that f is a 2π-periodic, ν times continuously differ-

entiable function on [−π, π], ν ≥ 0. Let tN be the trigonometric interpolant to f of degree N in the

K = 2N + 1 perturbed points (3.2). If either

(i) 0 < α < 1/4 and f (ν) is Hölder continuous on [−π, π] with exponent γ, 4α < γ ≤ 1 or

(ii) 1/4 ≤ α < 1/2, ν ≥ 1, and f (ν) is Hölder continuous on [−π, π] with exponent 4α−1 < γ ≤ 1,

then tN converges to f uniformly on [−π, π] at the rate

‖f − tN‖∞ = O

(
K4α − 1
α(1− 2α)

K−ν−γ

)
K→∞

,

with the implied constant in the big-O symbol independent both of α and of the choice of the perturbed

points x̃k.

3.4 2-Norm Lebesgue Constants and Kadec’s 1/4 Theorem

Recalling a question we asked in Section 3.1, we observe that the experiments of the previous section

suggest that, unlike the infinite-dimensional problem (see Section 3.2.4), there does not appear to be

any sort of “1/4 threshold” for the problem of trigonometric interpolation. Indeed, nothing in the

plots of Figure 3.5 indicates that α = 1/4 (or any other value of α, 0 < α < 1/2, for that matter)

occupies a distinguished position, nor do Conjecture 3.5 and Theorem 3.6 single it out as special.

Nevertheless, we cannot yet close the case on this matter because there is a gap between the

analysis of the previous section and the theory presented in Section 3.2: they use different norms.

The Lebesgue constant Λ̃K measures the size of the interpolant using the uniform norm. This is the

traditional norm to use from the viewpoint of approximation theory; however, the sampling theory

presented in Section 3.2 makes all of its measurements using the 2-norm.

78

3.4.1 The 2-Norm Lebesgue Constant

In order to get a more direct comparison, we repeat our experiments of the previous section but

instead measure the “2-norm Lebesgue constant” Λ̃(2)
K defined for a given grid of the form (3.2) by

Λ̃(2)
K = sup

‖f‖2≤1

‖tf‖L2([−π,π]),

where f = (f−N , . . . , fN) is a vector in CK , and tf is the unique trigonometric polynomial in TN

that satisfies tf (x̃k) = fk for each k. The norm ‖ ·‖L2([−π,π]) is the one induced by the inner product

(3.11) on L2([−π, π]), while ‖ · ‖2 denotes the norm on CK induced by the normalized Euclidean

inner product

〈f, g〉2 =
1
K

N∑
k=−N

fkgk. (3.28)

Another way to look at Λ̃(2)
K is that it is the lower frame bound A from (3.19) but for trigonometric

interpolation instead of interpolation in PWπ.

To be able to calculate Λ̃(2)
K , we need a way to characterize it that is amenable to numerical

computation. Remarkably, this is easy to do. If ˜̀k denotes the kth Lagrange basis function for our

interpolation scheme, then for a given f ∈ CK ,

‖tf‖2
L2([−π,π]) =

〈
N∑

k=−N

fk
˜̀
k,

N∑
k′=−N

fk′
˜̀
k′

〉
L2([−π,π])

=
N∑

k,k′=−N

fkfk′

〈˜̀
k, ˜̀k′〉

L2([−π,π])
= f∗Gf,

where

G =


〈˜̀−N , ˜̀−N

〉
L2([−π,π])

· · ·
〈˜̀−N , ˜̀N〉

L2([−π,π])

...
...〈˜̀

N , ˜̀−N

〉
L2([−π,π])

· · ·
〈˜̀

N , ˜̀N〉
L2([−π,π])

 ,
the Gram matrix for ˜̀−N , . . . , ˜̀N , viewed as members of L2([−π, π]). Note that G is Hermitian, and

since the ˜̀k are linearly independent, it is also positive definite. Since

sup
‖f‖2≤1

f∗Gf = Kλmax(G),

where λmax(G) is the largest eigenvalue of G,22 we have

Λ̃(2)
K =

√
Kλmax(G),

and this is easy to evaluate numerically. The inner products needed to form G can be computed

simply and quickly using Chebfun.
22This follows from the variational characterization of eigenvalues using Rayleigh quotients. Note that the factor

of K comes from the choice of normalization in (3.28).

79

3.4.2 The 2-Norm “Worst” Grid

Just as in Section 3.3.1, we begin our study by searching for the “worst” grid for a given K and α,

this time in terms of which choice of perturbations yields the largest value of Λ̃(2)
K instead of Λ̃K .

Again, it seems reasonable to expect that the largest value will occur for a grid that has all of its

points maximally perturbed. We therefore employ the same strategy of enumerating all such grids

up to symmetry and computing Λ̃(2)
K for each.

The results are given in Table 3.2, which is structured identically to Table 3.1; it presents the

results of the search for K = 3, 5, 7, and 9 and for seven values of α between 0 and 1/2. We observe

the interesting but perhaps not unexpected result that the same grid (3.26) that gave rise to the

largest traditional Lebesgue constant gives rise to the largest 2-norm Lebesgue constant as well.

Moreover, it appears to be the unique grid that maximizes Λ̃(2)
K , up to symmetry. Checking further

for K = 9, 11, . . . , 17 and α = 1/32, 2/32, . . . 15/32, we find that the same results holds in all cases.

Thus, we conjecture:

Conjecture 3.9. For given values of α and K, 0 < α < 1/2, the choice of the points x̃k that

maximizes Λ̃(2)
K is given by (3.26), uniquely, up to symmetry.

As before, we cannot presently prove this statement; however, we will continue to refer to (3.26)

as the “worst” grid in this context as well.

3.4.3 Asymptotic Behavior of the 2-Norm Lebesgue Constant

We now carry out similar experiments to those of Section 3.3.2 and study the behavior of Λ̃(2)
K for

the “worst” grid (3.26) as K becomes large for α fixed. The results are shown in Figure 3.8a. At

first glance, this plot does not look substantially different from the one for Λ̃K in Figure 3.5a. We

see that Λ̃(2)
K does not grow as quickly as Λ̃K at least for smaller values of α, but otherwise, the two

plots are qualitatively fairly similar. In particular, the growth of Λ̃(2)
K also appears to be at most

algebraic in K, the line for α = 1/4 looks no more distinguished in Figure 3.8a than it does in Figure

3.5a.

Figure 3.8b, which plots Λ̃(2)
K / logK instead, shows that this apparent similarity is deceiving.

This figure strongly suggests that if Λ̃(2)
K does grow as K → ∞ for α < 1/4, then it does so more

slowly than logK. Looking at Figure 3.8a again, it seems likely that Λ̃(2)
K may actually remain

bounded as K → ∞ for these values of α. For 1/4 < α < 1/2, Figure 3.8b shows that Λ̃(2)
K grows

more rapidly than logK. This is in keeping with Figure 3.8a, which shows clear algebraic growth

for these values of α. Estimating the rates by fitting least-squares lines to the last five data values

of each suggests growth at a rate of approximately O(K4α−1) for α in this range. The trend for

α = 1/4 is less clear. The figure suggests the possibility that Λ̃(2)
K grows more slowly than log(K)

when α = 1/4, but it is also possible that the asymptotic trend has not yet fully set in over the range

80

Pattern α = 1/16 α = 1/8 α = 3/16 α = 1/4 α = 5/16 α = 3/8 α = 7/16

+1 +1 +1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
+1 +1 -1 1.12647 1.30533 1.56870 1.98168 2.69782 4.18154 8.76690

+1 +1 +1 +1 +1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
+1 +1 +1 +1 -1 1.13228 1.32160 1.60364 2.05113 2.83646 4.48308 9.62844
+1 +1 +1 -1 -1 1.14914 1.37095 1.71624 2.29301 3.36711 5.76887 13.74639
+1 +1 -1 +1 -1 1.12815 1.31000 1.57860 2.00103 2.73567 4.26183 8.98963

+1 +1 +1 +1 +1 +1 +1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
+1 +1 +1 +1 +1 +1 -1 1.13386 1.32605 1.61326 2.07039 2.87523 4.56818 9.87408
+1 +1 +1 +1 +1 -1 -1 1.15411 1.38583 1.75119 2.37078 3.54527 6.22295 15.28286
+1 +1 +1 +1 -1 +1 -1 1.13584 1.33167 1.62555 2.09535 2.92634 4.68269 10.21248
+1 +1 +1 +1 -1 -1 -1 1.16093 1.40677 1.80193 2.48847 3.82886 6.98788 18.02460
+1 +1 +1 -1 +1 +1 -1 1.13097 1.31792 1.59568 2.03517 2.80431 4.41240 9.42406
+1 +1 +1 -1 +1 -1 -1 1.14649 1.36289 1.69694 2.24890 3.26301 5.49557 12.79738
+1 +1 +1 -1 -1 +1 -1 1.14649 1.36289 1.69694 2.24890 3.26301 5.49557 12.79738
+1 +1 -1 +1 +1 -1 -1 1.14430 1.35659 1.68296 2.22019 3.20372 5.36230 12.40551
+1 +1 -1 +1 -1 +1 -1 1.12867 1.31144 1.58165 2.00698 2.74728 4.28640 9.05752

+1 +1 +1 +1 +1 +1 +1 +1 +1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
+1 +1 +1 +1 +1 +1 +1 +1 -1 1.13450 1.32787 1.61721 2.07833 2.89125 4.60346 9.97622
+1 +1 +1 +1 +1 +1 +1 -1 -1 1.15602 1.39164 1.76498 2.40195 3.61799 6.41219 15.93727
+1 +1 +1 +1 +1 +1 -1 +1 -1 1.13829 1.33868 1.64097 2.12687 2.99133 4.82946 10.65027
+1 +1 +1 +1 +1 +1 -1 -1 -1 1.16497 1.41934 1.83295 2.56210 4.01153 7.49779 19.91994
+1 +1 +1 +1 +1 -1 +1 +1 -1 1.13450 1.32787 1.61721 2.07833 2.89125 4.60346 9.97622
+1 +1 +1 +1 +1 -1 +1 -1 -1 1.15181 1.37872 1.73365 2.32926 3.44321 5.94345 14.27336
+1 +1 +1 +1 +1 -1 -1 +1 -1 1.15181 1.37872 1.73365 2.32926 3.44321 5.94345 14.27336
+1 +1 +1 +1 +1 -1 -1 -1 -1 1.16857 1.43072 1.86160 2.63203 4.19115 8.01901 21.93411
+1 +1 +1 +1 -1 +1 +1 +1 -1 1.13250 1.32222 1.60497 2.05377 2.84173 4.49452 9.66105
+1 +1 +1 +1 -1 +1 +1 -1 -1 1.15032 1.37442 1.72410 2.30972 3.40323 5.85488 14.01684
+1 +1 +1 +1 -1 +1 -1 +1 -1 1.13717 1.33547 1.63387 2.11229 2.96108 4.76063 10.44319
+1 +1 +1 +1 -1 +1 -1 -1 -1 1.15726 1.39528 1.77320 2.41910 3.65367 6.49143 16.15980
+1 +1 +1 +1 -1 -1 +1 +1 -1 1.15032 1.37442 1.72410 2.30972 3.40323 5.85488 14.01684
+1 +1 +1 +1 -1 -1 +1 -1 -1 1.15582 1.39104 1.76359 2.39897 3.61178 6.39929 15.91081
+1 +1 +1 +1 -1 -1 -1 +1 -1 1.15726 1.39528 1.77320 2.41910 3.65367 6.49143 16.15980
+1 +1 +1 -1 +1 +1 +1 -1 -1 1.15029 1.37435 1.72412 2.31030 3.40601 5.86601 14.06810
+1 +1 +1 -1 +1 +1 -1 +1 -1 1.13282 1.32311 1.60686 2.05747 2.84896 4.50981 9.70326
+1 +1 +1 -1 +1 +1 -1 -1 -1 1.15613 1.39201 1.76599 2.40464 3.62554 6.43572 16.03363
+1 +1 +1 -1 +1 -1 +1 +1 -1 1.13282 1.32311 1.60686 2.05747 2.84896 4.50981 9.70326
+1 +1 +1 -1 +1 -1 +1 -1 -1 1.14558 1.36020 1.69062 2.23486 3.23098 5.41481 12.52904
+1 +1 +1 -1 +1 -1 -1 +1 -1 1.14292 1.35226 1.67200 2.19348 3.13662 5.17656 11.73422
+1 +1 +1 -1 -1 +1 +1 -1 -1 1.14975 1.37276 1.72042 2.30215 3.38760 5.81985 13.91443
+1 +1 +1 -1 -1 +1 -1 +1 -1 1.14558 1.36020 1.69062 2.23486 3.23098 5.41481 12.52904
+1 +1 +1 -1 -1 +1 -1 -1 -1 1.15613 1.39201 1.76599 2.40464 3.62554 6.43572 16.03363
+1 +1 -1 +1 +1 -1 +1 +1 -1 1.12647 1.30533 1.56870 1.98168 2.69782 4.18154 8.76690
+1 +1 -1 +1 +1 -1 +1 -1 -1 1.14194 1.34956 1.66648 2.18351 3.11983 5.14946 11.69084
+1 +1 -1 +1 +1 -1 -1 +1 -1 1.14194 1.34956 1.66648 2.18351 3.11983 5.14946 11.69084
+1 +1 -1 +1 -1 +1 +1 -1 -1 1.14327 1.35355 1.67597 2.20502 3.17001 5.27942 12.13588
+1 +1 -1 +1 -1 +1 -1 +1 -1 1.12889 1.31205 1.58295 2.00953 2.75225 4.29688 9.08646

Table 3.2: Results of the experiment of Section 3.4.2 for identifying a likely candidate for the choice
of points x̃k that yields the largest value of Λ̃(2)

K for a given K and α. As in Table 3.1, the first
column displays the perturbation pattern, and the other columns show the numerically computed
value of Λ̃(2)

K for several values of α between 0 and 1/2. The largest value of Λ̃(2)
K for a given choice

of K and α is printed in bold. We see that the same grid (3.26) that yielded the largest value of Λ̃K

also yields the largest value of Λ̃(2)
K in all cases.

81

of K considered. Letting α→ 1/4 in the O(K4α−1) behavior that we have observed for α > 1/4, it

seems likely that the behavior for α = 1/4 is O(1), i.e., Λ̃(2)
K continues to remain bounded as K →∞

in this case.

The behavior of Λ̃(2)
K as α → 1/2 for fixed K is illustrated in Figure 3.9. In stark contrast the

behavior of Λ̃K depicted in Figure 3.6, Λ̃(2)
K appears to remain bounded as α → 1/2, though the

limiting value (predictably) increases with K.

Together with Conjecture 3.9, these results lead us to make the following conjecture, which could

be regarded as a discrete version of Kadec’s 1/4 theorem (Theorem 3.1):

Conjecture 3.10. The 2-norm Lebesgue constant Λ̃(2)
K for any grid of the form (3.2) satisfies

Λ̃(2)
K =

{
O(1) 0 < α ≤ 1/4
O(K4α−1) 1/4 < α < 1/2

as K →∞ with α fixed. The implied constants in the big-O symbols are independent both of α and

of the choice of the perturbed points x̃k. This bound is attained when the x̃k are chosen according to

(3.26).

That is, we conjecture that Λ̃(2)
K remains bounded as K → ∞ for all α ≤ 1/4, while for 1/4 <

α < 1/2, it may grow without bound. As with the other conjectures we have made, we are unable to

prove this one at this time. The claim about which we feel least certain is the behavior for α = 1/4.

If Λ̃(2)
K does not remain bounded as K →∞ for α = 1/4, Figure 3.8b suggests strongly that it grows

at a rate that is at most O(logK).

We emphasize that even though this conjecture predicts that Λ̃(2)
K grows as K →∞ for α > 1/4,

the growth is modest. In the worst case when α is near 1/2, the rate is at most O(K). This suggests

that in spite of the emphasis on the importance of the 1/4 condition present in the sampling theory

literature—which focuses mainly on the infinite-dimensional problem—its impact is negligible for the

finite-dimensional approximations to the infinite-dimensional problem that get solved in practice.

Together, Conjectures 3.5 and 3.10 (and Theorem 3.6) indicate that there is little to fear from taking

α > 1/4 in the finite-dimensional problem. The point to avoid, rather, is α = 1/2.

3.5 Quadrature via Trigonometric Interpolation

We finish this chapter by revisiting Trefethen and Weideman’s original problem of approximating the

integrals of continuous periodic functions by integrating trigonometric interpolants. As we indicated

in Section 3.1, Trefethen and Weideman noted that the integrals of the trigonometric interpolants

to a periodic holomorphic function will converge in the absence of rounding error to the integral of

the function at a geometric rate as long as the interpolation points are uniformly distributed, even

if some of them coalesce.

82

10 1 10 2 10 3

Grid Size (K)

10 0

10 1

10 2

10 3

10 4

2-
N

or
m

 L
eb

es
gu

e
C

on
st

an
t

(a)

10 1 10 2 10 3

Grid Size (K)

10 -1

10 0

10 1

10 2

10 3

(2
-N

or
m

 L
eb

. C
on

st
.)

/lo
g(

K
)

(b)

Figure 3.8: (a) Numerically computed values of Λ̃(2)
K for the grid (3.26) as a function of K for

several values of K between 3 and 1,201 and for α = 1/32, 2/32, . . . , 15/32. Lower lines correspond
to lower values of α. The thick black line corresponds to α = 1/4. (b) Same as (a) but plots
Λ̃(2)

K / log(K) against K. The plots suggest that Λ̃(2)
K remains bounded—or at least grows more

slowly than log(K)—as K → ∞ when α < 1/4 and grows at an algebraic rate that is at most
O(K) for 1/4 < α < 1/2 For α = 1/4, the trend is not clear from the plot; we conjecture that Λ̃(2)

K

continues to remain bounded as K →∞ in this case.

10 -1010 -510 0

1=2! ,

10 0

10 1

10 2

10 3

2-
N

or
m

 L
eb

es
gu

e
C

on
st

an
t

K = 11
K = 21
K = 31
K = 51
K = 71
K = 101

Figure 3.9: Numerically computed values of Λ̃(2)
K for the grid (3.26) as a function of 1/2−α for several

fixed values of K. Note that the orientation of the horizontal axis has been reversed. Observe that
Λ̃(2)

K appears to remain bounded as α→ 1/2 for any fixed K.

83

3.5.1 Results Derived from Approximation Theorems

This result is ultimately based on the trigonometric version of the Fejér–Kalmár–Walsh theorem

(Theorem 1.12; see also the work of Hlawka [59] and Kis [70]) and is not numerically robust, nor

does it apply to functions that are not holomorphic. Using the results from Section 3.3.3, we can

state theorems for quadrature based on trigonometric interpolation in grids of the form (3.2) that

both apply to non-holomorphic functions and are meaningful numerically. Denoting the integral of

a function f from −π to π by I(f), all that is necessary is to relate the approximation error to the

quadrature error using the elementary inequality

|I(f)− I(g)| ≤ I(|f − g|) ≤ 2π‖f − g‖∞.

From Conjecture 3.7, we obtain

Conjecture 3.11. Let 0 < α < 1/2, and suppose that f is a 2π-periodic, ν-times continuously

differentiable function, ν ≥ 0, such that f (ν) is Hölder continuous on [−π, π] with exponent γ,

2α < γ ≤ 1. If tN is the trigonometric interpolant to f of degree N in the K = 2N + 1 perturbed

points (3.2), then I(tN) converges to I(f) on [−π, π] at the rate

|I(f)− I(tN)| = O

(
K2α − 1
α(1− 2α)

K−ν−γ

)
K→∞

,

with the implied constant in the big-O symbol independent both of α and of the choice of the perturbed

points x̃k.

Similarly, Theorem 3.8 yields

Theorem 3.12. Let 0 < α < 1/2, and suppose that f is a 2π-periodic, ν times continuously

differentiable function on [−π, π], ν ≥ 0. Let tN be the trigonometric interpolant to f of degree N

in the K = 2N + 1 perturbed points (3.2). If either

(i) 0 < α < 1/4 and f (ν) is Hölder continuous on [−π, π] with exponent γ, 4α < γ ≤ 1 or

(ii) 1/4 ≤ α < 1/2, ν ≥ 1, and f (ν) is Hölder continuous on [−π, π] with exponent 4α−1 < γ ≤ 1,

then I(tN) converges to I(f) on [−π, π] at the rate

|I(f)− I(tN)| = O

(
K4α − 1
α(1− 2α)

K−ν−γ

)
K→∞

,

with the implied constant in the big-O symbol independent both of α and of the choice of the perturbed

points x̃k.

84

3.5.2 Sums of Quadrature Weights

In this final section, we give some experimental evidence that, in fact, the situation may be even

better than the theorems just stated suggest. A very general theorem due to Pólya asserts that a

quadrature rule converges for all continuous functions on [−1, 1] if and only if it converges for all

polynomials and the sums of the absolute values of the quadrature weights remain bounded as the

number of points increases [23, p. 130], [105]. Taking the trigonometric analogue, if we can prove

that the sum of the absolute values of the weights for trigonometric interpolatory quadrature in

grids of the form (3.2) remains bounded for large K, then we will have shown that such quadrature

schemes are convergent for all continuous 2π-periodic functions without any further assumptions on

the functions’ regularity.

At the moment, we cannot prove any such statement; however, we can investigate the situation

numerically. The quadrature weights for a given grid are easy to compute: the weight wk at the kth

node is just the integral of the corresponding Lagrange basis function (3.25). This can be computed

via

wk =
∫ π

−π

˜̀
k(x) dx =

2π
K

N∑
j=−N

˜̀
k(xj),

i.e., by computing the mean value of ˜̀k on the equispaced grid (3.1) and multiplying by 2π.23

We begin by considering the sums of the absolute values of the weights for the “worst” grid

(3.26). We compute these sums for the grids with α = 1/64, 2/64, . . . , 31/64 for several values of

K up to K = 2001. For α ≤ 1/4, it turns out that the quadrature weights are all nonnegative and

therefore sum to 2π for all values of K. For 1/4 < α < 1/2, this is no longer true, and Figure 3.10a

displays how the sums vary with K for several values of α in this range. Not only do the sums

appear to remain bounded as K →∞ for all α, 0 < α < 1/2, they actually appear to decay toward

the value of 2π. Further testing shows that this behavior appears to continue to hold even when

α is very close to 1/2. Figure 3.10b shows the behavior of the sum of the quadrature weights for

the same values of K as Figure 3.10a but with α = 1/2− 10−10. Though the sum is very large (as

expected), it appears to at least level off as K grows.

On the basis of this evidence, we make the following conjecture:

Conjecture 3.13. The weights for quadrature by trigonometric interpolation in the nodes (3.26)

are all nonnegative for all K for 0 < α ≤ 1/4. For 1/4 < α < 1/2, they are no longer nonnegative,

but the sum of their absolute values remains uniformly bounded as K →∞.

For more general grids, the situation is much less clear. It is not true that the grid (3.26) leads to

the largest sum of the absolute values of the quadrature weights for a given K and α. Exhaustively

23This computes the coefficient for the constant term in the representation of è
k with respect to the usual (Fourier)

basis {eijx}N
j=−N , which is the only term that does not integrate to zero.

85

10 1 10 2 10 3

K

10 1

10 2

S
um

 o
f q

ua
d.

 w
ts

.

, = 8/32
, = 9/32
, = 10/32
, = 11/32
, = 12/32
, = 13/32
, = 14/32
, = 15/32
, = 31/64

(a)

10 1 10 2 10 3

K

1.9

1.91

1.92

1.93

1.94

1.95

1.96

1.97

1.98

1.99

2

2.01

S
um

 o
f q

ua
d.

 w
ts

.

#10 10

(b)

Figure 3.10: (a) Behavior of the sum of the absolute values of the quadrature weights for the “worst”
grid (3.26) for several values of α as K becomes large (up to K = 2001). (b) Same but plotting for
α = 1/2 − 10−10 only. Note in (a) that the sums appear to decay toward 2π as K → ∞, while in
(b), the sum levels off.

K = 7 K = 9
α Sum Pattern Sum Pattern

3/16 6.419300 -1 -1 +1 -1 +1 -1 +1 6.573631 -1 -1 +1 -1 +1 -1 +1 -1 +1

7/32 6.931198 -1 -1 +1 -1 +1 -1 +1 7.020432 -1 -1 +1 -1 +1 -1 +1 -1 +1

1/4 7.552545 -1 -1 +1 -1 +1 -1 +1 7.562472 -1 -1 +1 -1 +1 -1 +1 -1 +1

9/32 8.330386 -1 -1 +1 -1 +1 -1 +1 8.240611 -1 -1 +1 -1 +1 -1 +1 -1 +1

5/16 9.343019 -1 -1 +1 -1 +1 -1 +1 9.122849 -1 -1 +1 -1 +1 -1 +1 -1 +1

11/32 10.731242 -1 -1 +1 -1 +1 -1 +1 10.888812 -1 -1 +1 -1 +1 +1 -1 0 +1

3/8 13.356012 -1 -1 -1 +1 -1 +1 +1 13.565832 -1 -1 +1 -1 +1 +1 -1 0 +1

13/32 18.024649 -1 -1 -1 +1 -1 +1 +1 18.237170
-1 -1 +1 -1 -1 +1 -1 -1 +1

-1 -1 +1 -1 -1 +1 +1 -1 +1

7/16 27.324807 -1 -1 -1 +1 -1 +1 +1 27.806386 -1 -1 -1 -1 +1 -1 +1 +1 +1

15/32 57.506019 -1 -1 -1 -1 +1 +1 +1 57.296953 -1 -1 -1 -1 +1 -1 +1 +1 +1

Table 3.3: Perturbation patterns that yield the largest sum of the absolute values of the quadrature
weights for K = 7, 9 and several values of α. As in Table 3.1, a -1 represents a point that was
perturbed to the left by αh, and a +1 represents a points that was perturbed to the right. A 0
indicates a point that was left unperturbed.

enumerating the grids in the same way as in Section 3.3.1 and looking at the sums does not turn up

a clear candidate for a “worst” grid in terms of quadrature weights.

Expanding our search to include grids that leave some of the points unperturbed, we find that it

is not even true that the largest sum always occurs for a choice of the grid with all points maximally

perturbed. Table 3.3 shows the perturbation patterns obtained from this expanded search that yield

the largest value of the sum of the absolute values of the quadrature weights for K = 7 and 9 and

several values of α. For K = 9, the grid that yielded the largest sum for α = 11/32 and α = 3/8

leaves one point unperturbed. For K = 9 and α = 13/32, there are two inequivalent (in the sense

of symmetry) grids that yield the same sum. The table also shows that, unlike (3.26), general grids

can have negative values for some of the quadrature weights even for α ≤ 1/4.

This lack of a clear pattern makes it difficult to see how to proceed; however, we also observe

86

10 1 10 2 10 3

K

5

10

15

20

25

30

S
um

 o
f q

ua
d.

 w
ts

.

, = 8/32
, = 9/32
, = 10/32
, = 11/32
, = 12/32
, = 13/32
, = 14/32
, = 15/32
, = 31/64

Figure 3.11: Same as Figure 3.10a but for the Levinson-type grid (3.27).

from Table 3.3 that the maximal values over the grids that we searched do not increase much as K

increases from 7 to 9; indeed, for some values of α, we actually see a decrease in the maximal value

from K = 7 to K = 9. Looking at some larger values of K, we find that this trend continues for

K = 11, for which the largest sum we found is 59.119096, and for K = 13, for which the largest sum

is 59.620563. This suggests that if the sums ultimately do grow without bound, then they do so at

a very slow rate.

We can gain some additional insight by examining the sums of the absolute values of the quadra-

ture weights for the Levinson-type grid (3.27), which are depicted in Figure 3.11. As was the case

for the “worst” grid (3.26), the weights for α ≤ 1/4 turn out to be nonnegative for all K. We

observe that for most values of α, 1/4 < α < 1/2, the sums appear to remain bounded and even

decay toward 2π, just as was observed for (3.26). For α = 15/32 and α = 31/64, we appear to

observe growth, but it is not clear if this is genuine or if we simply have not taken K large enough

to determine the true trend. If the sums do grow for these values of α, they appear to do so at a

sub-algebraic rate.

The outcomes of these experiments lead us to make the following conjecture:

Conjecture 3.14. The sums of the absolute values of the weights for quadrature by trigonometric

interpolation in any system of grids of the form (3.2) for a fixed value of α, 0 < α < 1/2 remain

uniformly bounded as K →∞.

We are not as confident about this conjecture as Conjecture 3.13; however, it seems likely to be

true. Resolving this and Conjecture 3.13 is a topic for future research.

87

Chapter 4

Trigonometric Interpolation in
Non-Equispaced Points II

The sole aim of this chapter is to provide a proof of the bound on the Lebesgue constant Λ̃K for

trigonometric interpolation in the perturbed equispaced points (3.2) that we claimed in Theorem 3.6.

For ease of reference, we repeat our basic notational setup from Chapter 3 here. If K = 2N + 1 is

an odd integer, the zero-centered equispaced grid of length K in [−π, π] consists of the points

xk = kh, −N ≤ k ≤ N, (4.1)

where h = 2π/K is the grid spacing. We consider the perturbed grid

x̃k = xk + tkh, |tk| ≤ α, (4.2)

where the parameter α is a fixed value in the range 0 ≤ α < 1/2. The kth trigonometric Lagrange

basis function associated with the perturbed grid is denoted by ˜̀k; we have ˜̀k(xj) = 1 if j = k and

0 if j 6= k. From (3.23) and (3.24), we have

Λ̃K = sup
x∈[−π,π]

N∑
k=−N

|˜̀k(x)|. (4.3)

Our argument can be loosely outlined as follows. The bulk of the work is devoted to bounding

|˜̀0(x)|, which takes several steps to accomplish. Taking x as fixed, we determine the choice of the

points x̃j that maximizes |˜̀0(x)| and then bound the maximum using integrals. Since the resulting

bound is independent of x̃j , we can exploit symmetry to obtain bounds on |˜̀k(x)| for k 6= 0. We

then sum these bounds over k to obtain a bound on Λ̃K .

We begin with the following result, which shows that to bound |˜̀0(x)| we need only consider

grids in which all the points, possibly aside from x̃0, are perturbed by the maximum amount of αh.

Lemma 4.1. For all x ∈ [−π, π] and −N ≤ j ≤ N , j 6= 0,∣∣∣∣∣∣
sin
(

x−exj

2

)
sin
(ex0−exj

2

)
∣∣∣∣∣∣ ≤ max

∣∣∣∣∣∣
sin
(

x−(j−α)h
2

)
sin
(ex0−(j−α)h

2

)
∣∣∣∣∣∣ ,
∣∣∣∣∣∣
sin
(

x−(j+α)h
2

)
sin
(ex0−(j+α)h

2

)
∣∣∣∣∣∣
 . (4.4)

88

Proof. The statement is trivially true if x = x̃0. If x 6= x̃0, then from

d

dt

sin
(

x−t
2

)
sin
(ex0−t

2

) =
1
2

sin
(

x−ex0
2

)[
sin
(ex0−t

2

)]2 ,
we see that t 7→ sin

(
(x − t)/2

)
/ sin

(
(x̃0 − t)/2

)
has no critical points in [−π, π] apart from t = x̃0,

where it is singular. In particular, it has no critical points in any of the intervals [(j−α)h, (j+α)h]

for −N ≤ j ≤ N , j 6= 0, and therefore must assume its extreme values on these intervals at the

endpoints. Since x̃j ∈ [(j − α)h, (j + α)h] for each j, we are done.

Which of the two arguments to the maximum function on the right-hand side of (4.4) is larger

depends on both x and j. We need to understand the exact conditions under which each one takes

over. Our first step in this direction is the following lemma, which tells us when the two are equal.

Lemma 4.2. For 0 < α < 1/2 and −N ≤ j ≤ N , j 6= 0, the equation∣∣∣∣∣∣
sin
(

x−(j−α)h
2

)
sin
(ex0−(j−α)h

2

)
∣∣∣∣∣∣ =

∣∣∣∣∣∣
sin
(

x−(j+α)h
2

)
sin
(ex0−(j+α)h

2

)
∣∣∣∣∣∣ (4.5)

has exactly two solutions in [−π, π]: x = x̃0 and x = x∗j , where1

x∗j = 2arctan

(
cos(jh)− cos(αh) + tan

(
x̃0/2

)
sin(jh)

tan
(
x̃0/2

)(
cos(jh) + cos(αh)

)
− sin(jh)

)
.

Proof. Multiplying through by the denominators of both sides and applying some trigonometric

identities, we find that (4.5) can be reduced to∣∣∣∣cos
(
x̃0 − x

2
+ αh

)
− cos

(
x̃0 + x

2
− jh

)∣∣∣∣ = ∣∣∣∣cos
(
x̃0 − x

2
− αh

)
− cos

(
x̃0 + x

2
− jh

)∣∣∣∣ . (4.6)

If the expressions within the absolute value signs on either side of (4.6) are equal, then we have

cos
(
x̃0 − x

2
+ αh

)
= cos

(
x̃0 − x

2
− αh

)
.

To solve this equation, there are two cases to consider.

Case 1 : (x̃0 − x)/2 + αh = (x̃0 − x)/2− αh+ 2nπ for some integer n. Rearranging gives αh =

nπ, and substituting for h, we arrive at α = Kn/2. Since α < 1/2, this can only hold if n = 0, in

which case α = 0, but this is disallowed by our hypotheses.

Case 2 : (x̃0 − x)/2 + αh = αh− (x̃0 − x)/2 + 2nπ for some integer n. If this holds, then x̃0 −

x = 4nπ, but this can only happen if n = 0, since x̃0 − x ∈ [−π − αh, π + αh], and this interval is

contained in [−2π, 2π] because αh ≤ π. Thus, x = x̃0.

We conclude that x = x̃0 is the only solution when the expressions within the absolute value

signs on either side of (4.6) are equal. On the other hand, if they are equal but of opposite sign, we

get

2 cos
(
x̃0 + x

2
− jh

)
= cos

(
x̃0 − x

2
+ αh

)
+ cos

(
x̃0 − x

2
− αh

)
.

1Here and throughout this thesis, arctan denotes the principal branch of the inverse tangent function.

89

Simplifying the right-hand side to 2 cos
(
(x̃0 − x)/2

)
cos(αh) and then expanding both sides out

completely using trigonometric identities, we find that

cos
(
x̃0

2

)
cos
(x

2

)
cos(jh)− sin

(
x̃0

2

)
sin
(x

2

)
cos(jh) + sin

(
x̃0

2

)
cos
(x

2

)
sin(jh)

+ cos
(
x̃0

2

)
sin
(x

2

)
sin(jh) = cos

(
x̃0

2

)
cos
(x

2

)
cos(αh) + sin

(
x̃0

2

)
sin
(x

2

)
cos(αh).

Dividing both sides of this through by cos(x̃0/2) cos(x/2) and rearranging, we obtain

tan
(x

2

)
=

cos(jh)− cos(αh) + tan
(
x̃0/2

)
sin(jh)

tan
(
x̃0/2

)(
cos(jh) + cos(αh)

)
− sin(jh)

.

Taking the inverse tangent of both sides and multiplying by 2, we arrive at x = x∗j .

To move forward, we need a better understanding of the locations of the points x∗j . The requisite

inequalities are simple to state and are given in Lemma 4.4, but first we pause to establish a minor

fact that we will need in their proof.

Lemma 4.3. For |t| ≤ α and −N ≤ j ≤ N , j 6= 0,∣∣sin((j + t)h
)∣∣ > sin

(
(α− |t|)h

)
.

Proof. This is a consequence of the following chain of inequalities:

0 ≤ (α− |t|)h < (1− |t|)h ≤ (|j| − |t|)h

≤ (|j|+ |t|)h ≤ (N + |t|)h <
(
N + |t|+ 1

2
− α

)
h = π − (α− |t|)h ≤ π.

Lemma 4.4. For −N ≤ j ≤ N , j 6= 0, and 0 < α < 1/2,

(j − α)h < x∗j < (j + α)h.

Proof. Let

f(t) =
cos(jh)− cos(αh) + t sin(jh)
t
(
cos(jh) + cos(αh)

)
− sin(jh)

.

Note that f
(
tan(x̃0/2)

)
= tan(x∗j/2). A straightforward computation using the quotient rule and

some trigonometric identities shows that

f ′(t) = −

(
sin(αh)

t
(
cos(jh) + cos(αh)

)
− sin(jh)

)2

,

which is always negative wherever it is defined. By Lemma 4.3, we have | sin(jh)| > sin(αh) for each

j. Furthermore, note that j 6= 0 implies N ≥ 1, so that αh < π/3, and so cos(αh) > 0. Therefore,

| cos(jh) + cos(αh)| ≤ 1 + cos(αh) for each j. It follows that∣∣∣∣ sin(jh)
cos(jh) + cos(αh)

∣∣∣∣ > sin(αh)
1 + cos(αh)

= tan
(
αh

2

)
.

90

Hence, the singularity in f is outside the interval [tan(−αh/2), tan(αh/2)], and we conclude that

f
(
tan(αh/2)

)
≤ f

(
tan(x̃0/2)

)
≤ f

(
tan(−αh/2)

)
.

Next, consider the function g+ and the number M+ defined by

g+(t) =
cos(jh)− t+ tan(−αh/2) sin(jh)

tan(−αh/2)
(
cos(jh) + t

)
− sin(jh)

, M+ =
cos(jh)− 1 + tan(−αh/2) sin(jh)

tan(−αh/2)
(
cos(jh)− 1

)
− sin(jh)

.

Note that g+
(
cos(αh)

)
= f

(
tan(−αh/2)

)
and that

M+ =
cos(jh)−1

sin(jh) + tan(−αh/2)

tan(−αh/2) cos(jh)−1
sin(jh) − 1

=
tan(jh/2)− tan(−αh/2)

1 + tan(jh/2) tan(−αh/2)
= tan

(
(j + α)h

2

)
.

Therefore, if we can show that g+
(
cos(αh)

)
< M+, we will have shown that tan(x∗j/2) < tan

(
(j +

α)h/2), which implies that x∗j < (j + α)h, as desired. The remainder of the proof will be devoted

to establishing this fact. The lower bound on x∗j can be derived by considering the function g− and

the number M− defined by

g−(t) =
cos(jh)− t+ tan(αh/2) sin(jh)

tan(αh/2)
(
cos(jh) + t

)
− sin(jh)

, M− =
cos(jh)− 1 + tan(αh/2) sin(jh)

tan(αh/2)
(
cos(jh)− 1

)
− sin(jh)

and arguing similarly. We omit the details.

To show that g+
(
cos(αh)

)
< M+, we begin by noting that by multiplying the numerator and

denominator of both g+(t) and M+ by cos(−αh/2) and applying some trigonometric identities, they

can be rewritten as

g+(t) =
cos(αh/2)t− cos

(
(j + α/2)h

)
sin(αh/2)t+ sin

(
(j + α/2)h

) , M+ = −
cos(αh/2)− cos

(
(j + α/2)h

)
sin(αh/2)− sin

(
(j + α/2)h

) .
Consider the affine function ϕ obtained by multiplying together the denominators in these new

expressions for g+ and M+, where that of the latter is taken to include the leading minus sign:

ϕ(t) = − sin(αh/2)
(
sin(αh/2)− sin

(
(j + α/2)h

))
t

− sin
(
(j + α/2)h

)(
sin(αh/2)− sin

(
(j + α/2)h

))
.

We will show that ϕ
(
cos(αh)

)
> 0. First, note that ϕ(t) = 0 at t = t0 = − sin

(
(j+α/2)h

)
/ sin(αh/2)

and that by Lemma 4.3, this point lies outside of the interval [−1, 1]. Next, observe that sin(αh/2) >

0, that sin
(
(j + α/2)h

)
has the same sign as j, and that

ϕ′(t) = − sin(αh/2)
(
sin(αh/2)− sin

(
(j + α/2)h

))
.

If j < 0, then sin(αh/2) − sin
(
(j + α/2)h

)
> 0 trivially, so ϕ′(t) < 0. Thus, ϕ(t) > 0 for t < t0.

Inspecting the formula for t0, we find that t0 > 0 in this case. Since t0 cannot lie in the interval

[−1, 1], it must further be true that t0 > 1. As cos(αh) ≤ 1, we have that cos(αh) < t0, as desired.

On the other hand, if j > 0, then sin(αh/2)− sin
(
(j +α/2)h

)
< 0 by Lemma 4.3, and we have that

91

ϕ′(t) > 0, so that ϕ(t) > 0 for t > t0. But t0 < 0 in this case, and since cos(αh) > 0, we have

cos(αh) > t0, and we are done.

It follows that g+
(
cos(αh)

)
< M+ is equivalent to the inequality

−
(
cos(αh/2) cos(αh)− cos

(
(j + α/2)h

))(
sin(αh/2)− sin

(
(j + α/2)h

))
<
(
sin(αh/2) cos(αh) + sin

(
(j + α/2)h

))(
cos(αh/2)− cos

(
(j + α/2)h

))
.

Expanding out the products, moving all terms involving cos(αh) to the left and those not involving

it to the right, and using some trigonometric identities to simplify the result, we find that this in

turn is equivalent to (
sin
(
(j + α)h

)
− sin(αh)

)
cos(αh) < sin(jh).

Next, we expand sin
(
(j + α)h

)
and move all terms involving sin(jh) to the right, leaving us with

(
cos(jh)− 1

)
sin(αh) cos(αh) < sin(jh)

(
1−

(
cos(αh)

)2)
.

Finally, using the identities 1− cos(jh) = sin(jh) tan(jh/2) and 1−
(
cos(αh)

)2 = sin
(
αh
)2, we can

rearrange this one more time to find that our original inequality is equivalent to

sin(jh)
(
tan(αh) + tan(jh/2)

)
> 0.

If j > 0, then since sin(jh) > 0, this is equivalent to − tan(jh/2) < tan(αh), which holds trivially,

as the left-hand side is negative, while the right-hand side is positive. If j < 0, then sin(jh) < 0,

and the inequality is equivalent to − tan(jh/2) > tan(αh). Taking inverse tangents, we see that this

is equivalent to α < −j/2, and this inequality holds, since −j ≥ 1 and α < 1/2. This completes the

proof.

Assembling these results, we can prove the following statement about the right-hand side of (4.4).

Lemma 4.5. We have

max

∣∣∣∣∣∣
sin
(

x−(j−α)h
2

)
sin
(ex0−(j−α)h

2

)
∣∣∣∣∣∣ ,
∣∣∣∣∣∣
sin
(

x−(j+α)h
2

)
sin
(ex0−(j+α)h

2

)
∣∣∣∣∣∣
 =



∣∣∣∣∣∣
sin
(

x−(j−α)h
2

)
sin
(ex0−(j−α)h

2

)
∣∣∣∣∣∣

x ∈ [−π, x̃0] ∪ [x∗j , π]
for 1 ≤ j ≤ N

x ∈ [x∗j , x̃0]
for −N ≤ j ≤ −1

∣∣∣∣∣∣
sin
(

x−(j+α)h
2

)
sin
(ex0−(j+α)h

2

)
∣∣∣∣∣∣

x ∈ [x̃0, x
∗
j]

for 1 ≤ j ≤ N

x ∈ [−π, x∗j] ∪ [x̃0, π]
for −N ≤ j ≤ −1.

Proof. We will give the proof assuming 1 ≤ j ≤ N ; the proof for −N ≤ j ≤ −1 is similar. When

α = 0, there is nothing to prove, so we may assume α > 0. By Lemma 4.2, the two arguments

of the maximum function are equal only at x = x̃0 and x = x∗j , and by Lemma 4.4, we have

92

−π < x̃0 < (j − α)h < x∗j < (j + α)h < π. Evaluating both arguments of the maximum function at

x = (j − α)h, we see that the first is zero, while the second is nonzero. Thus, the second must be

the larger on [x̃0, x
∗
j]. Evaluating at x = (j + α)h, the situation is reversed, and by periodicity we

find that the first must be the larger on [−π, x̃0] ∪ [x∗j , π].

This lemma is all we need for maximizing the factors in |˜̀0(x)| with respect to the x̃j for j 6= 0. We

would like to do something similar for x̃0. Unfortunately, the dependence on x̃0 of the various cases

in this result tells us that we cannot go further and maximize any one factor over x̃0 independently of

x. The next result shows that we can get around this by pairing up the factors at ±j for 1 ≤ j ≤ N

instead of considering them in isolation.

Note that we state the result only for x ∈ [−π, 0]. The reason is that, by symmetry, any bound

we obtain on |˜̀0(x)| for x ∈ [−π, 0] that is independent of x must also hold for x ∈ [0, π]. We will

therefore ignore the case of x ∈ [0, π] until we reach the end of our argument, at which point we will

see that it has been taken care of for free. Alternatively, one could write out an analogous argument

that assumes x ∈ [0, π] instead.

Lemma 4.6. For x ∈ [−π, 0] and 1 ≤ j ≤ N ,

∣∣∣∣∣∣
sin
(

x−ex−j

2

)
sin
(

x−exj

2

)
sin
(ex0−ex−j

2

)
sin
(ex0−exj

2

)
∣∣∣∣∣∣ ≤



∣∣∣∣∣∣
sin
(

x+(j−α)h
2

)
sin
(

x−(j−α)h
2

)
sin
(

jh
2

)
sin
(

(2α−j)h
2

)
∣∣∣∣∣∣ −π ≤ x ≤ x∗−j

∣∣∣∣∣∣
sin
(

x+(j+α)h
2

)
sin
(

x−(j−α)h
2

)
sin
(

(2α+j)h
2

)
sin
(

(2α−j)h
2

)
∣∣∣∣∣∣ x∗−j ≤ x ≤ 0.

Proof. Fix x, and define the functions f1, f2, and f3 by

f1(t) =
sin
(

x+(j−α)h
2

)
sin
(

x−(j−α)h
2

)
sin
(

t+(j−α)h
2

)
sin
(

t−(j−α)h
2

) =
cos
(
(j − α)h

)
− cos(x)

cos
(
(j − α)h

)
− cos(t)

f2(t) =
sin
(

x+(j+α)h
2

)
sin
(

x−(j−α)h
2

)
sin
(

t+(j+α)h
2

)
sin
(

t−(j−α)h
2

) =
cos(jh)− cos(x+ αh)
cos(jh)− cos(t+ αh)

f3(t) =
sin
(

x+(j−α)h
2

)
sin
(

x−(j+α)h
2

)
sin
(

t+(j−α)h
2

)
sin
(

t−(j+α)h
2

) =
cos(jh)− cos(x− αh)
cos(jh)− cos(t− αh)

.

Note that only the denominators of these functions vary with t; the numerators are constant. By

Lemma 4.5, we have ∣∣∣∣∣∣
sin
(

x−ex−j

2

)
sin
(

x−exj

2

)
sin
(ex0−ex−j

2

)
sin
(ex0−exj

2

)
∣∣∣∣∣∣ ≤


|f1(x̃0)| −π ≤ x ≤ x∗−j

|f2(x̃0)| x∗−j ≤ x ≤ x̃0

|f3(x̃0)| x̃0 ≤ x ≤ x∗j .

(4.7)

93

Recalling that x̃0 ∈ [−αh, αh], by maximizing |f1(t)|, |f2(t)|, and |f3(t)| over t ∈ [−αh, αh] under

the appropriate conditions on x, we will show that this inequality may be replaced by∣∣∣∣∣∣
sin
(

x−ex−j

2

)
sin
(

x−exj

2

)
sin
(ex0−ex−j

2

)
sin
(ex0−exj

2

)
∣∣∣∣∣∣ ≤

{
|f1(αh)| −π ≤ x ≤ x∗−j

|f2(αh)| x∗−j ≤ x ≤ 0,

and this is the inequality we are trying to establish. There are three cases to consider.

Case 1 : −π ≤ x ≤ x∗−j . In this case, the right-hand side of (4.7) is governed by f1. The denomi-

nator of f1 has a critical point in [−αh, αh] at t = 0, and it takes on identical values at the endpoints

±αh. Since

0 < αh < (1− α)h ≤ (j − α)h ≤ (N − α)h <
(
N +

1
2

)
h = π,

we have cos
(
(j−α)h

)
≤ cos(αh) ≤ 1, and so

∣∣cos
(
(j−α)h

)
− cos(αh)

∣∣ ≤ ∣∣cos
(
(j−α)h

)
− 1
∣∣. Thus,

the denominator is smallest in magnitude at t = ±αh. Since the numerator of f1 does not vary

with t, we are done.

Case 2 : x∗−j ≤ x ≤ −αh. Here, the behavior of (4.7) is determined by f2. The only critical point

of the denominator f2 in [−αh, αh] is at the left endpoint, where it takes the value cos(jh)− 1. At

the right endpoint, the denominator is cos(jh)− cos(2αh). From

0 < 2αh < h ≤ jh ≤ Nh <

(
N +

1
2

)
h = π,

we see that cos(jh) ≤ cos(2αh) ≤ 1, and so we have | cos(jh)− cos(αh)| ≤ | cos(jh)− 1|. Thus, the

denominator is smallest in magnitude at t = αh, and we are done, as in the previous case.

Case 3 : −αh ≤ x ≤ 0. In this case, for −αh ≤ x̃0 ≤ x, the right-hand side of (4.7) is governed by

f3, while for x ≤ x̃0 ≤ αh, it is governed by f2. From the previous case, we know that the maximum

absolute value of f2(t) for t ∈ [−αh, αh] occurs at t = αh, and a virtually identical argument shows

that the maximum absolute value of f3(t) over the same range occurs at t = −αh. We are thus left

to compare |f3(−αh)| and |f2(αh)|. Since these two quantities have the same denominator, we need

only compare their numerators. The conditions on x imply that

0 ≤ αh+ x ≤ αh− x ≤ 2αh ≤ jh < π,

the later inequalities following as in the developments of the previous case. Therefore, cos(jh) ≤

cos(x−αh) ≤ cos(x+αh), which implies that | cos(jh)− cos(x−αh)| ≤ | cos(jh)− cos(x+αh)|. It

follows that |f2(αh)| ≥ |f3(−αh)|, as desired.

At last, we can prove the following result, which gives a bound on |˜̀0(x)| for x ∈ [−π, 0] that is

independent of the points x̃j . First, we introduce some additional notation that we will need for the

remainder of our argument. Define x∗0 = 0 and x∗−N−1 = −π. For 0 ≤ k ≤ N , let R∗k = [x∗−k−1, x
∗
−k]

and Rk = [(−k − 1− α)h, (−k + α)h]. Observe that
⋃N

k=0R
∗
k = [−π, 0]. Again for 0 ≤ k ≤ N , let

Pk(x) =

 N∏
j=1

∣∣∣∣sin(x− (j − α)h
2

)∣∣∣∣
 k∏

j=1

∣∣∣∣sin(x+ (j − α)h
2

)∣∣∣∣
 N∏

j=k+1

∣∣∣∣sin(x+ (j + α)h
2

)∣∣∣∣
 ,

94

and let

Qk =

 N∏
j=1

∣∣∣∣sin((2α− j)h
2

)∣∣∣∣
 k∏

j=1

∣∣∣∣sin(jh2
)∣∣∣∣
 N∏

j=k+1

∣∣∣∣sin((2α+ j)h
2

)∣∣∣∣
 .

Finally, define

Mk = max
x∈[−π,0]∩Rk

Pk(x)
Qk

,

and note that Mk does not depend on the points x̃j .

Lemma 4.7. For 0 ≤ k ≤ N and x ∈ R∗k, we have |˜̀0(x)| ≤Mk.

Proof. Just multiply together the inequalities derived in Lemma 4.6 for 1 ≤ j ≤ N , and note that

R∗k ⊂ Rk by Lemma 4.4.

Next, we turn to bounding Mk. Our strategy will be to reduce the products Pk(x) and Qk to

sums by taking logarithms and then bounding the sums using integrals. We begin with Pk(x), which

requires more work than Qk because of its dependence on x. The bound that we need is given by

Lemma 4.14, but before presenting it, we first establish several minor technical results that we will

need in its proof.

Lemma 4.8. For 0 ≤ k ≤ N and x ∈ Rk,∣∣∣∣sin(x+ (k − α)h
2

)
sin
(
x+ (k + 1 + α)h

2

)∣∣∣∣ ≤ ∣∣∣∣sin((α+ 1/2)h
2

)∣∣∣∣2 .
Proof. The derivative of the expression inside the absolute value signs on the left-hand side of this

inequality is (1/2) sin
(
x + (k + 1/2)h

)
, which vanishes inside Rk only at x = −(k + 1/2)h. The

maximum absolute value of the expression must occur at this point, since it is zero at the endpoints

of Rk. Substituting this value in for x in the left-hand side, we arrive at the right-hand side.

Lemma 4.9. For 1 ≤ k ≤ N and x ∈ Rk,∣∣∣∣sin(x− (1− α)h
2

)
sin
(
x+ (1− α)h

2

)∣∣∣∣ ≥ ∣∣∣∣sin((k + 1− 2α)h
2

)
sin
(

(k − 1)h
2

)∣∣∣∣ .
Proof. Let f(x) be the expression inside the absolute value signs on the left-hand side of this in-

equality. Applying some trigonometric identities, we find that f(x) = cos
(
(1 − α)h

)
/2 − cos(x)/2.

If 1 ≤ k ≤ N − 1, then since

0 ≤ (1− α)h ≤ (k − α)h ≤ −x ≤ (k + 1 + α)h ≤ (N + α)h < π,

we have cos(x) ≤ cos
(
(1− α)h

)
, and so f(x) ≥ 0 for x ∈ Rk. The same string of inequalities shows

that f ′(x) = sin(x)/2 is negative on Rk, so f is decreasing on Rk. Therefore, the smallest absolute

value of f is obtained by evaluating at the right endpoint x = (−k + α)h, and this produces the

expression on the right-hand side of the inequality to be established.

95

For the k = N case, we note that f has a critical point in RN at the midpoint x = −π. Since

f ′′(x) = cos(x)/2, we have f ′′(−π) = −1/2, and so this point is a local maximum. Thus, the

minimum must occur at one of the two endpoints. Noting that f is even about π, the value of f

must be the same at both endpoints, so we may as well pick the right endpoint x = (−N + α)h.

Since 0 ≤ (1− α)h ≤ (N − α)h ≤ π, the value of f at this endpoint is nonnegative, completing the

proof.

Lemma 4.10. For K ≥ 3 and x ∈ R0,∣∣∣∣sin(x− (1− α)h
2

)
sin
(
x+ (1 + α)h

2

)∣∣∣∣ ≤ ∣∣∣∣sin(h2
)∣∣∣∣2 .

Proof. As in the previous argument, let f(x) be the expression inside the absolute value signs on

the left-hand side of the inequality, and note that f(x) = cos(h)/2− cos(x+ αh)/2. Since

−π < −h ≤ x+ αh ≤ 2αh ≤ h < π,

for x ∈ R0, we have cos(h) ≤ cos(x+ αh) for x ∈ R0, and it follows that f is negative on R0. Since

cos(x + αh) ≤ 1, we have 0 ≥ f(x) ≥ cos(h)/2 − 1/2. This lower bound is attained for x ∈ R0 at

x = −αh. Thus, f attains its maximum absolute value on R0 at x = −αh, and substituting this

value into the original expression for f yields the claimed inequality.

Lemma 4.11. For K ≥ 3 and x ∈ R1, the following inequalities hold:∣∣∣∣sin(x− (1− α)h
2

)∣∣∣∣ ≥ ∣∣sin((1− α)h
)∣∣ ,∣∣∣∣sin(x+ (1− α)h

2

)∣∣∣∣ ≤ ∣∣∣∣sin((1 + 2α)h
2

)∣∣∣∣ ,∣∣∣∣sin(x+ (2 + α)h
2

)∣∣∣∣ ≤ ∣∣∣∣sin((1 + 2α)h
2

)∣∣∣∣ .
Proof. The first inequality follows from

−π ≤ −3
2
h ≤ x− (1− α)h

2
≤ (α− 1)h ≤ 0,

the second from

−π ≤ − (1 + 2α)h
2

≤ x+ (1− α)h
2

≤ 0,

and the third from

0 ≤ x+ (2 + α)h
2

≤ (1 + 2α)h
2

≤ π.

Lemma 4.12. For 0 ≤ k ≤ N and x ∈ Rk,

[x+ (k − α)h] log
(
−x+ (k − α)h

2

)
− [x+ (k + 1 + α)h] log

(
x+ (k + 1 + α)h

2

)
≤ −(1 + 2α)h log

(
(α+ 1/2)h

2

)
.

96

Proof. Let f(x) be the expression on the left-hand side of this inequality. The derivative of f is

f ′(x) = log
(
− x+ (k − α)h
x+ (k + 1 + α)h

)
,

and this vanishes in Rk only at the point x = −(k+1/2)h. Since f(x) tends to −∞ as x approaches

the endpoints of Rk, f must assume its maximum value on Rk at this point. Evaluating f at this

point yields the right-hand side of the claimed inequality.

Lemma 4.13. For x ∈ R0,(
x− (1− α)h

)
log
(
−x− (1− α)h

2

)
−
(
x+ (1 + α)h

)
log
(
x+ (1 + α)h

2

)
≤ −2h log

(
h

2

)
.

Proof. As in the previous argument, let f(x) be the expression on the left-hand side of the inequality.

We have

f ′(x) = log
(
−x+ (α− 1)h
x+ (α+ 1)h

)
,

and this vanishes in R0 only at the point x = −αh. Moreover,

f ′′(x) =
2h

(x+ αh)2 − h2
.

The denominator of this function is a quadratic polynomial with positive leading coefficient and

zeroes at (−1 − α)h and (1 − α)h. Since x ∈ R0, we have (−1 − α)h ≤ x ≤ αh < (1 − α)h, and it

follows that f ′′ is negative everywhere on R0. This implies that f has a global maximum on R0 at

the critical point at −αh that we just found. Evaluating f(−αh) produces the right-hand side of

the inequality to be established.

Lemma 4.14. For sufficiently large K and x ∈ Rk, 0 ≤ k ≤ N , we have

Pk(x) ≤ 5 · 2−KK

for k = 0, 1 and

Pk(x) ≤ 3 · 2−KK2α

∣∣∣∣sin((k + 1− 2α)h
2

)
sin
(

(k − 1)h
2

)∣∣∣∣α−1/2

for 2 ≤ k ≤ N .

Proof. Let Sk(x) = logPk(x). For 1 ≤ j ≤ N , define aj(x), bj(x), and cj(x) by

aj(x) = log
∣∣∣∣sin(x− (j − α)h

2

)∣∣∣∣ ,
bj(x) = log

∣∣∣∣sin(x+ (j − α)h
2

)∣∣∣∣ ,
cj(x) = log

∣∣∣∣sin(x+ (j + α)h
2

)∣∣∣∣ .

97

For brevity, we will typically suppress the argument when referring to these quantities, writing aj

in place of aj(x), and so forth. Let

Ak(x) =
N−1∑
j=1

1
2
h(aj + aj+1), Bk(x) =

k−1∑
j=1

1
2
h(bj + bj+1), Ck(x) =

N−1∑
j=k+1

1
2
h(cj + cj+1),

and note that

hSk(x) = Ak(x) +Bk(x) + Ck(x) +
1
2
h(a1 + aN + b1 + bk + ck+1 + cN).

The sums Ak(x), Bk(x), and Ck(x) are composite trapezoid rule approximations to the integral

of log
∣∣sin((x + t)/2

)∣∣ (with respect to t) over certain subintervals of [−π, π]. Since this function

is concave-down everywhere on [−π, π], these approximations will yield lower bounds on the corre-

sponding integrals [23, p. 54]. More precisely, we have

Ak(x) ≤
∫ −(1−α)h

−(N−α)h

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt,
Bk(x) ≤

∫ (k−α)h

(1−α)h

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt,
Ck(x) ≤

∫ (N+α)h

(k+1+α)h

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt,
where the inequality for Bk(x) holds for 1 ≤ k ≤ N and the inequality for Ck(x) holds for 0 ≤ k ≤

N − 1. There are four cases to consider. To aid the reader’s comprehension, diagrams illustrating

the different cases and how they are handled are presented in Figure 4.1.

Case 1 : 2 ≤ k ≤ N − 1. In this case, the preceding developments yield

hSk(x) ≤
∫ π

−π

−
∫ −(N−α)h

−π

−
∫ (1−α)h

−(1−α)h

−
∫ (k+1+α)h

(k−α)h

−
∫ π

(N+α)h

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt
+

1
2
h(a1 + aN + b1 + bk + ck+1 + cN).

Now we just need to bound the integrals and loose terms on the right-hand side of this inequality.

It turns out that the first integral can be evaluated explicitly [52, 4.384-7]:∫ π

−π

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt = −π log(4). (4.8)

For the second and fifth integrals, we have the following bound, which can be derived by applying

the trapezoid rule to the integral from (N + α)h to 2π − (N − α)h and using the periodicity of the

integrand:

−
∫ −(N−α)h

−π

−
∫ π

(N+α)h

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt ≤ −1
2
h(aN + cN). (4.9)

The fourth integral requires some care, since it has a singularity in the interval of integration at the

point t = −x. (Recall our assumption that x ∈ Rk = [(−k − 1 − α)h, (−k + α)h].) We therefore

split the integral into two parts at that point. Noting the expansion

log
(
sin(t)

)
= log(t)− 1

6
t2 − 1

180
t4 +O(t6)t→0+ , (4.10)

98

-3 -2 -1 0 1 2 3
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(a)

-3 -2 -1 0 1 2 3
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(b)

-3 -2 -1 0 1 2 3
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(c)

-3 -2 -1 0 1 2 3
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(d)

Figure 4.1: Diagrams illustrating how to handle the four different cases in the proof of Lemma 4.14.
Here, K = 21, and α = 0.2. (a) Case 1 (2 ≤ k ≤ N − 1; the plot shows k = 5). (b) Case 2 (k = 1).
(c) Case 3 (k = N). (d) Case 4 (k = 0). Each plot displays the integrand sin

(
(x + t)/2

)
as a

function of t for x equal to a chosen point in Rk. The integrand is divided into several regions based
on the trapezoid scheme used to bound it. The regions and evaluation points are colored according
to the trapezoid sum in which they are included. Red regions and points correspond to the sum
Ak(x) and the points aj . Blue regions and points correspond to the sum Bk(x) and the points bj .
Green regions and points correspond to the sum Ck(x) and the points cj . The regions that must
be handled differently due to the singularity in the integrand are colored in cyan; the singularity
is indicated by a dashed black line (except in (c), in which it occurs at the interval boundaries).
The magenta regions correspond to the interval of width 2(1− α)h between a1 and b1. The yellow
regions correspond to [−π, aN] and [cN , π]. Using periodicity, we treat these as a single interval and
bound the integral over it with a single trapezoid sum. Note that a magenta region is present in (c)
and that yellow regions are present in (b) and (d), though they are difficult to see in the diagrams
due to the integrand being small.

99

we have

−
∫ −x

(k−α)h

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt =
(
x+ (k − α)h

) [
log
(
−x+ (k − α)h

2

)
− 1
]

+O(h3)

and

−
∫ (k+1+α)h

−x

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt =
(
x+ (k + 1 + α)h

) [
1− log

(
x+ (k + 1 + α)h

2

)]
+O(h3).

Adding these expressions together and applying Lemma 4.12, we obtain

−
∫ (k+1+α)h

(k−α)h

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt ≤ (1 + 2α)h− (1 + 2α)h log
(

(α+ 1/2)h
2

)
+O(h3).

For the third integral, we use another trapezoid rule bound and combine the result with the loose

terms (1/2)h(a1 + b1) to yield

−
∫ (1−α)h

−(1−α)h

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt+
1
2
h(a1 + b1) ≤

(
α− 1

2

)
h(a1 + b1)

≤
(
α− 1

2

)
h log

∣∣∣∣sin((k + 1− 2α)h
2

)
sin
(

(k − 1)h
2

)∣∣∣∣ , (4.11)

where the second inequality follows from Lemma 4.9 and the fact that α < 1/2. Finally, by

Lemma 4.8 and (4.10),

1
2
h(bk + ck+1) ≤ h log

(
(α+ 1/2)h

2

)
+O(h3). (4.12)

Putting all of these results together, we conclude that

hSk(x) ≤ −π log(4) +
(
α− 1

2

)
h log

∣∣∣∣sin((k + 1− 2α)h
2

)
sin
(

(k − 1)h
2

)∣∣∣∣
− 2αh log

(
(α+ 1/2)h

2

)
+ (1 + 2α)h+O(h3). (4.13)

Dividing through by h, exponentiating, and suitably relaxing the constants that emerge now yields

the claimed bound in this case.

Case 2 : k = 1. This case is very similar to the previous one. In particular, all of the same integral

bounds apply except that the second inequality in (4.11) is meaningless because the argument to

the logarithm function vanishes. We replace (4.11) and (4.12) with

−
∫ (1−α)h

−(1−α)h

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt+
1
2
h(a1 + 2b1 + c2) ≤

(
α− 1

2

)
ha1 +

1
2
hc2 + αhb1

≤
(
α− 1

2

)
h log

(
(1− α)h

)
+
(
α+

1
2

)
h log

(
(1 + 2α)h

2

)
+O(h3),

where the second inequality follows from Lemma 4.11 and (4.10). Combining this with the other

results just established, we obtain

hS1(x) ≤ −π log(4) +
(
α− 1

2

)
h log

(
(1− α)h

)
+
(
α+

1
2

)
h log

(
(1 + 2α)h

2

)
− (1 + 2α)h log

(
(α+ 1/2)h

2

)
+ (1 + 2α)h+O(h3),

100

and this implies the claimed bound for this case.

Case 3 : k = N . Since CN (x) has no terms, we have, in this case,

hSN (x) ≤
∫ π

−π

−
∫ −(N−α)h

−π

−
∫ (1−α)h

−(1−α)h

−
∫ π

(N−α)h

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt+
1
2
h(a1 + aN + b1 + bN).

We can bound the third integral and the loose terms (1/2)h(a1+b1) using (4.11); however, we cannot

use (4.9) to bound the second and fourth integrals. Instead, noting that there is a singularity at −x

(or a periodic image thereof) within the domain of integration, we use (4.10) to find that

−
∫ −x

(N−α)h

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt =
(
x+ (N − α)h

) [
log
(
−x+ (N − α)h

2

)
− 1
]

+O(h3)

and

−
∫ 2π−(N−α)h

−x

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt =
(
2π+x− (N−α)h

) [
1− log

(
2π + x− (N − α)h

2

)]
+O(h3).

Noting that 2π + x− (N − α)h = x+ (N + 1 + α)h, we can add these together and use periodicity

and Lemma 4.12 to obtain

−
∫ −(N−α)h

−π

−
∫ π

(N−α)h

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt ≤ (1 + 2α)h− (1 + 2α)h log
(

(α+ 1/2)h
2

)
+O(h3).

Finally, by the same identity, Lemma 4.8, and (4.10), we have

1
2
h(aN + bN) ≤ h log

(
(α+ 1/2)h

2

)
+O(h3).

Putting everything together, we arrive once again at (4.13), which finishes the argument in this case.

Case 4 : k = 0. As B0(x) has no terms, we have

hS0(x) ≤
∫ π

−π

−
∫ −(N−α)h

−π

−
∫ (1+α)h

−(1−α)h

−
∫ π

(N+α)h

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt+
1
2
h(a1 + aN + c1 + cN).

We can take care of the second and fourth integrals and the loose terms (1/2)h(aN +cN) using (4.9).

For the third integral, noting that −x lies in the interval of integration, we use (4.10) one more time

to conclude that

−
∫ −x

−(1−α)h

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt =
(
x− (1− α)h

) [
log
(
−x− (1− α)h

2

)
− 1
]

+O(h3)

and

−
∫ (1+α)h

−x

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt =
(
x+ (1 + α)h

) [
1− log

(
x+ (1 + α)h

2

)]
+O(h3).

Adding these together and using Lemma 4.13 gives

−
∫ (1+α)h

−(1−α)h

log
∣∣∣∣sin(x+ t

2

)∣∣∣∣ dt ≤ −2h log
(
h

2

)
+ 2h+O(h3).

Finally, by Lemma 4.10 and (4.10), we have

1
2
h(a1 + c1) ≤ h log

(
h

2

)
+O(h3).

101

-3 -2 -1 0 1 2 3
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Figure 4.2: Diagram illustrating the argument for the proof of Lemma 4.15. Here, K = 21, α = 0.2,
and k = 5. The red, blue, and green rectangles correspond to the midpoint rule bounds associated
with the first, second, and third sums in (4.14), respectively. The integral over singularity-containing
gap between the rightmost red rectangle and leftmost blue one is accounted for in the second integral
on the right-hand side of (4.15), while the integral over the gap between the rightmost blue rectangle
and the leftmost green one is accounted for in the third.

Assembling all of these facts, we find that

hS0(x) ≤ −π log(4)− h log
(
h

2

)
+ 2h+O(h3),

and upon dividing through by h, exponentiating, and adjusting the constant factors that arise, we

obtain the desired result.

All cases have now been handled. The proof is complete.

Next, we bound Qk. The result we need is the following:

Lemma 4.15. For sufficiently large K,

Qk ≥ (1− 2α)2−KK1−2α

∣∣∣∣sin((k + 1/2 + α)h
2

)∣∣∣∣−2α

.

Proof. The proof is similar in structure to that of Lemma 4.14. Let Sk = log(Qk), so that

Sk =
N∑

j=1

log
∣∣∣∣sin((2α− j)h

2

)∣∣∣∣+ k∑
j=1

log
∣∣∣∣sin(jh2

)∣∣∣∣+ N∑
j=k+1

log
∣∣∣∣sin((2α+ j)h

2

)∣∣∣∣ . (4.14)

We will bound Sk using integrals of log
∣∣sin(t/2)

∣∣, just as before, but this time, since we seek a lower

bound, we use the midpoint rule instead of the trapezoid rule [23, p. 54]. A diagram illustrating the

argument is given in Figure 4.2. Assuming 0 ≤ α ≤ 1/4, we have

hSk ≥
∫ π

−π

−
∫ h/2

(2α−1/2)h

−
∫ (k+2α+1/2)h

(k+1/2)h

log
∣∣∣∣sin(t2

)∣∣∣∣ dt. (4.15)

We evaluated the first integral in (4.8), above. We bound the third integral using the midpoint rule:

−
∫ (k+2α+1/2)h

(k+1/2)h

log
∣∣∣∣sin(t2

)∣∣∣∣ dt ≥ −2αh log
∣∣∣∣sin((k + 1/2 + α)h

2

)∣∣∣∣ .
102

For the second integral, we split the interval of integration at the singularity at 0 and use (4.10) to

compute

−
∫ h/2

(2α−1/2)h

log
∣∣∣∣sin(t2

)∣∣∣∣ dt =
(

2α− 1
2

)
h log

(
(1/2− 2α)h

2

)
− h

2
log
(
h

4

)
+ (1− 2α)h+O(h3).

From these results, it follows that

hSk ≥ −π log(4)− 2αh log
∣∣∣∣sin((k + 1/2 + α)h

2

)∣∣∣∣
+
(

2α− 1
2

)
h log

(
(1/2− 2α)h

2

)
− h

2
log
(
h

4

)
+ (1− 2α)h+O(h3).

Dividing through by h, exponentiating, and suitably adjusting the constant factors that arise, we

obtain the claimed result.

If 1/4 < α < 1/2, the argument is similar except that we have to track the j = 1 term in the

first sum in the definition of Sk independently. We write

hSk ≥
∫ π

−π

−
∫ h/2

(2α−3/2)h

−
∫ (k+2α+1/2)h

(k+1/2)h

log
∣∣∣∣sin(t2

)∣∣∣∣ dt+ h log
∣∣∣∣sin((2α− 1)h

2

)∣∣∣∣ .
Using (4.10) one last time, we compute

h log
∣∣∣∣sin((2α− 1)h

2

)∣∣∣∣ = h log
(

(1− 2α)h
2

)
+O(h3).

and

−
∫ h/2

(2α−3/2)h

log
∣∣∣∣sin(t2

)∣∣∣∣ dt =
(

2α− 3
2

)
log
(

(3/2− 2α)h
2

)
− h

2
log
(
h

4

)
+ 2(1− α)h+O(h3).

Therefore,

hSk ≥ −π log(4)− 2αh log
∣∣∣∣sin((k + 1/2 + α)h

2

)∣∣∣∣+ h log
(

(1− 2α)h
2

)
+
(

2α− 3
2

)
log
(

(3/2− 2α)h
2

)
− h

2
log
(
h

4

)
+ 2(1− α)h+O(h3).

and this implies the claimed bound in the usual way.

Note that the proof of this lemma shows that the constant 1−2α can be dropped from the bound

when 0 ≤ α ≤ 1/4. We have chosen for simplicity to include it in this case anyway because omitting

it will at best improve our final results by a small constant factor.

At this point, we have all that we need to bound |˜̀0(x)| uniformly for x ∈ [−π, π] and independent

of the points x̃j : evaluate the bounds on Mk for x ∈ [−π, 0] ∩ Rk given by Lemmas 4.14 and 4.15,

and take the maximum over k. Lemma 4.7 shows that the result bounds |˜̀0(x)| for x ∈ [−π, 0]. By

symmetry, the same bound must hold for x ∈ [0, π] as well. Even further, by considering circular

rotations of the points x̃j , the bound can be seen to apply to |˜̀k(x)| for k 6= 0. Therefore, by (4.3),

we could bound Λ̃K by multiplying the bound on |˜̀0(x)| by K.

103

We can do better than this, however, because Lemmas 4.7 and 4.14 retain some information

about how |˜̀0(x)| varies with x through the hypothesis that x ∈ Rk. We can use this information

to get a better bound on |˜̀k(x)| for k 6= 0 than the one just described. The result we need is given

by the following lemma, which we could have proved earlier but have delayed until now.

Lemma 4.16. If x ∈ R∗p, 0 ≤ p ≤ N , then for −N ≤ k ≤ N ,

|˜̀k(x)| ≤



max(M−(p+k),M−(p+k+1),M−(p+k+2)) −N ≤ p+ k ≤ −2
max(M0,M1) p+ k = −1, 0
max(Mp+k−1,Mp+k,Mp+k+1) 1 ≤ p+ k ≤ N − 1
max(MN−1,MN) p+ k = N

max(MK−(p+k),MK−(p+k+1),MK−(p+k+2)) N + 1 ≤ p+ k ≤ 2N − 1
max(M0,M1) p+ k = 2N.

(4.16)

Proof. For k = 0, the result follows from Lemma 4.7, which actually gives a stronger bound. The

proof for k 6= 0 is ultimately just a matter of reducing it to the k = 0 case by exploiting circular and

reflectional symmetry; however, there are some subtleties, so we will spell out the details to make

things clear. Note that x ∈ R∗p implies x ∈ Rp by Lemma 4.4.

First, suppose that 1 ≤ k ≤ N . Then, 1 ≤ p+ k ≤ 2N , so only the last four cases in (4.16) are

relevant. Let

x̂j =

{
x̃j+k − kh −N ≤ j ≤ N − k

x̃j+k−K + 2π − kh N − k + 1 ≤ j ≤ N.

These points are just a circular shift in [−π, π] of the points x̃j by kh. It follows that ˜̀k(x) =̂̀
0(x− kh), where ̂̀0 is the (trigonometric) Lagrange basis function for the points x̂j that takes on

the value 1 at x̂0. It is easy to check that

x̂j =

{
xj + tj+kh −N ≤ j ≤ N − k

xj + tj+k−Kh N − k + 1 ≤ j ≤ N,

where the xj are the equispaced points (4.1), and the tj are defined by (4.2). Thus, the points

x̂j constitute a set of perturbed equispaced points of the sort that we have been considering. In

particular, we can use Lemma 4.7 to bound ̂̀0(x− kh) and hence ˜̀k(x). There are several cases to

consider.

Case 1 : 1 ≤ p+ k ≤ N − 1. Since x ∈ Rp, it follows that x − kh ∈ Rp+k, which means that

x − kh must belong to one of R∗p+k−1, R
∗
p+k, and R∗p+k+1, again by Lemma 4.4. By Lemma 4.7,

|̂̀0(x− kh)| ≤ max(Mp+k−1,Mp+k,Mp+k+1).

Case 2 : p+ k = N and (−p− 1/2)h ≤ x ≤ (−p+ α)h. We have x − kh ∈ RN . Moreover, x −

kh ≥ (−p − k − 1/2)h = (−N − 1/2)h = −π, so x − kh ∈ [−π, 0] ∩ RN . Thus, x − kh belongs to

either R∗N or R∗N−1 by Lemma 4.4, and so Lemma 4.7 gives |̂̀0(x− kh)| ≤ max(MN−1,MN).

Case 3 : p+ k = N and (−p− 1− α)h ≤ x < (−p− 1/2)h. Again, we have x − kh ∈ RN , but

this time, x− kh < π. Nevertheless, ̂̀0(x− kh) = ̂̀
0(x− kh+ 2π), and x− kh+ 2π ∈ [0, π]∩−RN .

104

By reflecting the problem about 0 (i.e., replacing x̂j with −x̂j for each j and x − kh + 2π by

−(x−kh+2π) ∈ [−π, 0]∩RN), and applying Lemma 4.7, we obtain |̂̀0(x−kh)| ≤ max(MN−1,MN)

as in the previous case.

Case 4 : N + 1 ≤ p+ k ≤ 2N − 1. Just as in the previous case, we will look not at ̂̀0(x−kh) but

at ̂̀0(x−kh+2π). Noting that 2π = Kh, we see that x−kh+2π ∈ −RK−(p+k+1). Since x ≥ −π and

k ≤ N , we have x−kh+2π ≥ −π+(K−N)h = h/2 > 0. Thus, x−kh+2π ∈ [0, π]∩−RK−(p+k+1).

Reflecting about 0 as was done in the previous case and noting that −(x − kh + 2π) must belong

to one of R∗K−(p+k), R
∗
K−(p+k+1), and R∗K−(p+k+2) by Lemma 4.4, we may apply Lemma 4.7 to

conclude that |̂̀0(x− kh)| ≤ max(MK−(p+k),MK−(p+k+1),MK−(p+k+2)).

Case 5 : p+ k = 2N . This is handled exactly the same as the previous case except that since

x − kh + 2π ∈ [0, π] ∩ −R0, we have that −(x − kh + 2π) can only belong to one of R∗0 and R∗1.

Therefore, |̂̀0(x− kh)| ≤ max(M0,M1).

For −N ≤ k ≤ −1, the argument is similar. In this case, the circularly shifted points x̂j are

x̂j =

{
x̃j+k − kh −N − k ≤ j ≤ N

x̃j+k+K − 2π − kh −N ≤ j ≤ −N − k − 1,

so that

x̂j =

{
xj + tj+kh −N − k ≤ j ≤ N

xj + tj+k+Kh −N ≤ j ≤ −N − k − 1.

Just as before, we have ˜̀k(x) = ̂̀
0(x − kh). Noting that −N ≤ p + k ≤ N − 1, the proof again

breaks into cases as follows.

Case 1 : 1 ≤ p+ k ≤ N − 1. Just as in the previous Case 1, we have x − kh ∈ Rp+k, and the

result follows in exactly the same way.

Case 2 : p+ k = 0 and (−p− 1− α)h ≤ x ≤ −ph. Here, x − kh ∈ R0, and the restriction on x

forces x− kh ≤ 0, so in fact, x− kh ∈ [−π, 0] ∩R0. Therefore, x− kh belongs to one of R∗0 and R∗1

by Lemma 4.4, and so by Lemma 4.7 we have |̂̀0(x− kh)| ≤ max(M0,M1).

Case 3 : p+ k = 0 and −ph < x ≤ (−p+ α)h. Now x−kh ∈ R0, but 0 < x−kh ≤ αh. To bound̂̀
0(x − kh) in this case, we reflect the problem about 0 as we did in some of the cases for positive

k above. Since [−αh, αh] ⊂ R0, we have −(x− kh) ∈ [−π, 0] ∩ R0, and so Lemma 4.7 tells us that

|̂̀0(x− kh)| ≤ max(M0,M1) once again.

Case 4 : p+ k = −1 and (−p− 1− α)h ≤ x ≤ (−p− 1)h. In this case, x − kh ∈ [−αh, 0] and

hence belongs to [−π, 0]∩R0. Applying Lemma 4.7, we have |̂̀0(x− kh)| ≤ max(M0,M1) just as in

the previous two cases.

Case 5 : p+ k = −1 and (−p− 1)h < x ≤ (−p+ α)h. Now, x− kh ∈ [0, π] ∩ −R0. Reflecting in

0 and using Lemma 4.7 yet again gives |̂̀0(x− kh)| ≤ max(M0,M1).

Case 6 : −N ≤ p+ k ≤ −2. We have x−kh ∈ −R−(p+k+1). Since −R−(p+k+1) ⊂ [0, π], we reflect

in 0 and observe that, by Lemma 4.4, −(x−kh) belongs to one ofR∗−(p+k), R
∗
−(p+k+1), andR∗−(p+k+2).

Applying Lemma 4.7 one last time, we obtain |̂̀0(x−kh)| ≤ max(M−(p+k),M−(p+k+1),M−(p+k+2)).

105

All cases have been handled. The proof is finished.

The point of Lemma 4.16 is that it allows us to bound Λ̃K by summing the bounds of Lemma 4.7

over k instead of maximizing them over k and multiplying by K as described previously.

Lemma 4.17. We have

Λ̃K ≤ 9
N∑

k=0

Mk. (4.17)

Proof. Suppose that x ∈ [−π, 0] ∩ R∗p, 0 ≤ p ≤ N . We can use Lemma 4.16 to bound the sum

in (4.3) for this value of x by summing the right-hand side of (4.16) over −N ≤ k ≤ N . This is

equivalent to summing it over the values of p + k such that −N + p ≤ p + k ≤ N + p, and this is

certainly bounded above by the sum over the larger range −N ≤ p+ k ≤ 2N . Writing j in place of

p+ k, it follows that

N∑
k=−N

|˜̀k(x)| ≤
−2∑

j=−N

max(M−j ,M−(j+1),M−(j+2)) +
N−1∑
j=1

max(Mj−1,Mj ,Mj+1)

+
2N−1∑

j=N+1

max(MK−j ,MK−(j+1),MK−(j+2)) + 3 max(M0,M1) + max(MN−1,MN).

Since max(a, b) ≤ a+ b when a, b ≥ 0, we can convert the maxima into sums to obtain

N∑
k=−N

|˜̀k(x)| ≤
N∑

j=2

Mj +
N−1∑
j=1

Mj +
N−2∑
j=0

Mj +
N−2∑
j=0

Mj +
N−1∑
j=1

Mj +
N∑

j=2

Mj

+
N∑

j=2

Mj +
N−1∑
j=1

Mj +
N−2∑
j=0

Mj + 3M0 + 3M1 +MN−1 +MN

after simplifying the indices of summation. We immediately obtain

N∑
k=−N

|˜̀k(x)| ≤ 9
N∑

j=0

Mj .

Since the right-hand side of this inequality is independent of p, this bound actually holds for all

x ∈ [−π, 0]. Even further, since the Mj are independent of both x and the points (4.2), by symmetry,

it holds for all x ∈ [−π, π]. The result now follows from (4.3).

At last, we can prove Theorem 3.6.

Proof of Theorem 3.6. We use Lemmas 4.14 and 4.15 to bound the right-hand side of (4.17). For

K sufficiently large and k = 0, 1, we have

Mk ≤
5

1− 2α
K2α

∣∣∣∣sin((k + 1/2 + α)π
K

)∣∣∣∣2α

≤ 5
1− 2α

K2α

∣∣∣∣ (k + 1/2 + α)π
K

∣∣∣∣2α

≤ 10π
1− 2α

, (4.18)

while for 2 ≤ k ≤ N ,

Mk ≤
3

1− 2α
K4α−1

∣∣∣sin((k+1/2+α)π
K

)∣∣∣2α

∣∣∣sin((k+1−2α)π
K

)
sin
(

(k−1)π
K

)∣∣∣1/2−α
≤ 3

1− 2α
K4α−1

∣∣∣sin((k+1/2+α)π
K

)∣∣∣2α

∣∣∣sin((k−1)π
K

)∣∣∣1−2α .

106

In deriving the last expression, we have used the inequality∣∣∣∣sin((k + 1− 2α)π
K

)∣∣∣∣ ≥ ∣∣∣∣sin((k − 1)π
K

)∣∣∣∣ ,
which clearly holds for 2 ≤ k ≤ N − 1 and for k = N with 1/4 ≤ α < 1/2, since in those cases,

(k + 1 − 2α)π/K ∈ [0, π/2], and k + 1 − 2α ≥ k > k − 1. To see that it holds for k = N with

0 < α < 1/4 as well, note that in this case

sin
(

(N + 1− 2α)π
K

)
= sin

(
(N + 2α)π

K

)
by the symmetry of sine about π/2. Since N + 2α ∈ [0, π/2] and N + 2α > N − 1, the inequality

follows.

Using the inequalities | sin(x)| ≤ |x| for x ∈ R and | sin(x)| ≥ (2/π)|x| for |x| ≤ π/2, we can

simplify the bound on Mk for 2 ≤ k ≤ N even further to

Mk ≤
3

1− 2α
K4α−1

∣∣∣ (k+1/2+α)π
K

∣∣∣2α

∣∣∣ 2(k−1)
K

∣∣∣1−2α ≤ 3π
1− 2α

(k + 1)2α

(k − 1)1−2α
. (4.19)

The result now follows from summing the bounds on the Mk established in (4.18) and (4.19) and

bounding the sum by interpreting it as a midpoint rule approximation2 to the integral of a function

that is concave-up (note that N + 1/2 = K/2):

N∑
k=2

(k + 1)2α

(k − 1)1−2α
≤
∫ N+1/2

3/2

(x+ 1)2α

(x− 1)1−2α
dx ≤ (K/2 + 1)2α

∫ K/2

3/2

dx

(x− 1)1−2α

=
(K2/4− 1)2α − (K/4 + 1/2)2α

2α
≤ (K2/4)2α − (K/4)2α

2α
=
K4α −K2α

42α2α
≤ K4α − 1

2α
.

We close this chapter with a word about why our argument falls short of establishing the stronger

bound on Λ̃K predicted by Conjecture 3.5. As summarized in the opening paragraphs of this chapter,

our argument proceeds by choosing the perturbed points x̃j to maximize |˜̀k| for a fixed value of k,

bounding the maximum, and then summing the bounds. This is a different (and easier) problem

than choosing the points to maximize the sum
∑N

k=−N |˜̀k| and bounding that maximum instead.

In symbols, our argument bounds Λ̃K by bounding the rightmost expression in the following

chain of inequalities:

Λ̃K ≤ maxex−N ,...,exN

max
x∈[−π,π]

N∑
k=−N

|˜̀k(x)| ≤ max
x∈[−π,π]

N∑
k=−N

maxex−N ,...,exN

|˜̀k(x)|.

The loss enters in the passage to the rightmost expression from the one in the middle. It seems

likely that any attempt to prove Conjecture 3.5 will need to consider the |˜̀k| all together at once in

the sum instead of individually as we have done here.
2The author thanks Andrew Thompson for suggesting the use of the midpoint rule instead of a simpler Riemann

sum. The latter yields a bound that does not have O(log K) behavior in the limit as α → 0.

107

Chapter 5

Rational Interpolation and
Eigenvalue Computation1

In this final chapter, we consider an application of rational interpolation to computing the eigen-

values of large matrices. We show that the contour integral methods for such problems that have

enjoyed some popularity in recent years are actually equivalent to computing the poles of a rational

interpolant to the matrix resolvent. We then exploit this observation to devise a new algorithm that

improves on these methods in the case where the matrix is real and symmetric by enabling one to

use only real arithmetic.

5.1 Introduction

Let A ∈ CN×N be a large square matrix, and consider the problem of computing the eigenvalues

of A that lie within a given region of the complex plane. Some of the most successful techniques

for attacking this problem are based on projecting A onto an approximately invariant subspace

associated with the eigenvalues of interest and computing the eigenvalues of the projection. Of

these, perhaps the best known are the Krylov subspace techniques such as the implicitly restarted

Arnoldi method [127], which is implemented in the widely used software package ARPACK [75].

Recently, a new class of algorithms has been proposed which derive their projections from complex

contour integrals. Though early traces of these ideas can be found in the work of Goedecker on linear-

scaling methods for electronic structure calculation [47, 48] and in that of Labreuche on numerical

methods for nonlinear eigenvalue problems that arise in the study of acoustic resonance [74, p.

192–196], the best-known algorithms of this type are the Sakurai–Sugiura (SS) method [120] and

the FEAST algorithm, due to Polizzi [104]. A major computational advantage offered by these

algorithms is that they are very easily parallelizable.
1The content in this chapter is adapted from the paper [7] by the author and his doctoral supervisor Lloyd N.

Trefethen. Trefethen posed the original question of whether rational interpolation in Chebyshev points could be useful
for eigenvalue computation. The author worked out the details of how to accomplish this, including establishing the
connection between rational interpolation and the Kravanja–Van Barel method for zerofinding and identifying the
importance of the Rayleigh–Ritz approach based on rational filters. The author also wrote the text of the paper.

108

Some of the most important eigenvalue problems involve matrices A that are real and symmetric.

For large such problems, it is natural to want to take advantage of the parallelism offered by contour

integral methods; however, by their very nature, these methods require complex arithmetic even

though the eigenvalues sought are real. Aside from the fact that the need to use complex arithmetic

to solve a real problem is conceptually jarring, this means that methods based on contour integrals

suffer roughly a factor of two penalty in both time and storage costs, compared with approaches

that rely only on real arithmetic.

In this chapter, we present a technique that addresses this deficiency. Our approach is motivated

by the connection between the SS method and rational interpolation established in [6] and can be

succinctly described as a projection method that uses a rational filter with only real poles. Projection

methods based on rational filters have been examined in the Japanese literature by Murakami [85, 86],

whose work we discuss in some detail later on.

The remainder of our discussion is organized as follows. In Section 5.2, we review the connection

between the SS method and rational interpolation, introduce the idea of using the latter to find

eigenvalues, and show how this formulation yields a method with SS-like parallelism that uses only

real arithmetic. Unfortunately, as we will see in Section 5.4, methods based directly on rational

interpolation are numerically unstable, but in Section 5.5, we will show how they can be reformulated

to avoid this difficulty by using a Rayleigh–Ritz procedure and rational filters. Section 5.6 contains

information pertinent to developing practical realizations of our method. In Section 5.7, we give a

summary of the proposed algorithm, and finally, in Section 5.8, we illustrate its performance on a

numerical example.

While our main application is to real symmetric matrices A, much of our discussion does not

depend directly on this structure. Accordingly, we will assume most of the time that A is arbitrary

and specialize to the real symmetric or Hermitian case when appropriate.

5.2 Finding Poles of the Resolvent

The methods we consider are rooted in the fact that the eigenvalues of a matrix A are the poles of

its resolvent (A− zI)−1. Given vectors u, v ∈ CN , we consider the function

f(z) = u∗(A− zI)−1v, (5.1)

a “scalarized” version of (A − zI)−1. (If A is Hermitian, it is common to take u = v.) If A is

diagonalizable (an assumption we will make throughout the chapter), we can write it in an eigenvalue

decomposition as

A =
N ′∑

h=1

λhPh,

109

where λ1, . . . , λN ′ are the distinct eigenvalues of A and P1, . . . , PN ′ are the corresponding spectral

projectors. Then, f takes the form

f(z) =
N ′∑

h=1

u∗Phv

λh − z
.

Thus, f is a rational function, and if v and u are generic in the sense that v (respectively, u) is not

orthogonal to any of the right (respectively, left) eigenspaces of A, then f will have a simple pole at

each of the points λh. Our goal will be to compute the poles of this function that lie within a given

region of interest.

5.2.1 The Sakurai–Sugiura method

The original method proposed by Sakurai and Sugiura in [120] computes the poles of f within a

region Ω ⊂ C bounded by a simple, closed, piecewise smooth curve γ by applying the derivative-free

variant of the pole-finding algorithm of Kravanja and Van Barel [6, 72, 73]. If A has s ≤ N ′ distinct

eigenvalues within Ω (a number which, for the time being, we will assume is known) this algorithm

works by computing the moment integrals

µj =
1

2πi

∫
γ

zjf(z) dz, j = 0, . . . , 2s− 1, (5.2)

and using them to form the s× s Hankel matrices

Hs =


µ0 µ1 · · · µs−1

µ1 µ2 · · · µs

...
...

...
µs−1 µs · · · µ2s−2

 , H<
s =


µ1 µ2 · · · µs

µ2 µ3 · · · µs+1

...
...

...
µs µs+1 · · · µ2s−1

 .
The poles of f within γ are then given by the eigenvalues of the generalized eigenvalue problem for

the pencil H<
s − λHs. Because it makes use of these Hankel matrices, we will refer to this method

as the SS-H method.

In practice, the integrals (5.2) cannot be computed exactly and must be approximated using

a quadrature rule. If this rule is defined by nodes z0, . . . , zK−1 ∈ C and corresponding weights

w0, . . . , wK−1 ∈ C, then we obtain the approximation

µj ≈
K−1∑
k=0

wkz
j
ku
∗(A− zkI)−1v. (5.3)

The dominant contribution to the computational cost of applying this method comes from solving

the K linear systems involving shifts of A at each quadrature node required to compute (5.3). If A

is large, these linear solves are potentially expensive; however, as each system is independent of the

others, they can be solved in parallel.

110

5.3 Rational Interpolation

An alternative method for computing the poles of f is to form a rational approximation to f and

compute the poles of the approximation. The simplest type of rational approximation is a rational

interpolant. Given K points z0, . . . , zK−1 ∈ C, we seek polynomials p and q of appropriately chosen

maximum degrees m and n such that

p(zk)
q(zk)

= f(zk), k = 0, . . . ,K − 1.

As was described in Section 1.4.1, in practice, it is easier to multiply through by the denominator

and work with the linearized conditions

p(zk) = f(zk)q(zk), k = 0, . . . ,K − 1. (5.4)

Recall from Section 1.4 that we must choose m and n such that m+ n+ 1 = K. Obviously, the

degree of q should be at least as large as the number of eigenvalues sought. As we are assuming

for now that this number is known, we will take n to be exactly equal to it. In practice, n will

need to be selected based on an estimate of this number, and we note in particular that it may be

advantageous to make n larger, even if the number is known exactly; see Section 5.6.2. Once we

have computed the interpolant, finding the poles is simply a matter of finding the roots of q, which

can be accomplished by solving an eigenvalue problem, the structure of which depends on the basis

chosen to represent q.

In terms of computational structure, rational interpolation is very similar to the SS-H method.

The dominant cost involved comes from solving the K linear systems required to evaluate f at each

of the interpolation nodes, and, just as in the SS-H method, these systems can be solved in parallel.

Also as in the SS-H method, obtaining the approximations to the eigenvalues of A boils down to

solving a small, dense eigenvalue problem.

In fact, it turns out that the SS-H method and rational interpolation are mathematically equiv-

alent (in exact arithmetic) in the most basic case where (1) the eigenvalues sought are those in

the unit disc, (2) the contour integrals in the SS-H method are discretized using the trapezoidal

rule in the roots of unity, and (3) those same roots are used for the interpolation nodes when con-

structing the rational interpolant. This was shown in [6], where the observation takes the form of

a theorem asserting the equivalence of rational interpolation and the derivative-free Kravanja–Van

Barel method. This equivalence, combined with the success enjoyed by contour integral methods in

practice, is one of the main reasons we have been motivated to consider approaches to eigenvalue

computation based on rational interpolation.

111

5.3.1 Rational Interpolation on a Real Interval

Though the SS-H method and rational interpolation are very similar, as just observed, they provide

different perspectives on how to approach eigenvalue computation. In particular, rational interpola-

tion schemes are not constrained by the need to worry about contours, regions, or quadrature rules;

there are only interpolation nodes. This simpler structure naturally leads one to consider schemes

that are not so easily conceived in a framework based strictly on contour integrals.

Suppose that A is a Hermitian matrix, so that the eigenvalues of A are all real, and suppose

that we seek the eigenvalues that lie in a given interval I ⊂ R. For concreteness, let us suppose that

I = [−1, 1]. Applying a contour integral method requires the selection of a contour in the complex

plane that encloses I. The unit circle is an obvious choice and is often used, as are long, narrow

ellipses that enclose I. Both of these choices of contour can be used as the basis for a successful

algorithm.

If, in addition, A is real, however, this method has an unfortunate defect. As any reasonable

choice of quadrature rule for approximating the contour integrals will have nodes that do not lie on

the real axis, we must use complex arithmetic to solve a real eigenvalue problem. Complex operations

take roughly twice as much work to perform as real operations, and storing complex matrices takes

twice as much memory as storing real ones.

Rational interpolation affords us a way out of this problem. Unlike in a contour integral frame-

work, we are not forced by the demands of a quadrature rule to take some evaluation points off the

real axis. Instead, we are free to take the interpolation nodes all to lie in I. For the reasons discussed

in Chapter 1, a natural candidate for a good set of nodes is a set of Chebyshev points in I.2 In this

chapter, we will work with the K Chebyshev points of the first kind x
(1)
k given by (1.14). To keep

our notation uncluttered, we will drop the superscript and refer to these points simply as xk.

Thus, we arrive at the following simple algorithm: find p and q that satisfy (5.4) with zk = xk

and then compute the roots of q. Since all the points xk are real, only linear systems involving real

shifts are solved to evaluate the scalarized resolvent f . If A is real, only real arithmetic is employed.

All that remains is to decide how to solve the linearized rational interpolation problem (5.4).

As discussed in Section 1.4.3, rational interpolation has a propensity for rounding errors to cause

spurious pole-zero pairs to appear when the interpolant is computed in the obvious way. To combat

this, we use the algorithm presented in [50], which combines the earlier algorithm of [97] with a

regularization technique based on the SVD to detect and remove these spurious pairs; for a short

description, see Sections 1.4.2 and 1.4.3. This algorithm is implemented in the MATLAB code

ratinterp within the freely available Chebfun software package (see Section 1.5).

2The discussion in Chapter 1 is for polynomial, not rational, interpolation; however, the choice of Chebyshev
points still makes sense as we are solving the linearized rational interpolation problem, which computes the numerator
and denominator polynomials individually. Moreover, the algorithm for solving this problem described in Section
1.4.2 can be implemented efficiently using the fast Fourier transform when the Chebyshev points are used; see [97].

112

Exact Computed Error

0.0 0.00000240 2.40×10−6

0.1 0.09992181 7.82×10−5

0.2 0.20039592 3.96×10−4

0.3 0.27060498 2.94×10−2

0.4 0.40129619 1.30×10−3

0.5 0.48977909 1.02×10−2

0.6 0.59984376 1.56×10−4

0.7 0.70009663 9.66×10−5

0.8 0.79959982 4.00×10−4

0.9 0.89999995 4.51×10−8

Table 5.1: Eigenvalues and absolute errors illustrating instability of eigenvalue computation via
rational interpolation for the test problem considered in the text.

5.4 Instability of Rational Interpolation for Finding Eigen-
values

Unfortunately, the simple algorithm just described suffers from numerical instability. The difficulty

is that the eigenvalues of A in [−1, 1] may be distributed in such a manner that the polynomial

rootfinding problem set up by the interpolation process is poorly conditioned. This problem can

occur even if the number of eigenvalues of A in [−1, 1] is small and the eigenvalue problem itself is

well-conditioned (which it always is if A is Hermitian), as we now illustrate.3

Suppose that A is a 12×12 diagonal matrix with diagonal entries −10, 10, and 0, 0.1, 0.2, . . . , 0.9

and that we wish to compute the 10 eigenvalues of A inside [−1, 1]. Using the ratinterp code just

mentioned, we can implement the algorithm of the previous section in just a few lines of MATLAB

and Chebfun as follows:

A = diag([0:0.1:0.9, -10, 10]); I = eye(12); v = randn(12, 1);

K = 32; xk = chebpts(K, 1); fk = zeros(K, 1);

for k = 1:K, fk(k) = v’*((A - xk(k)*I) \ v); end

[p, q, r, mu, nu, pol] = ratinterp(fk, K - 11, 10, K, ’type1’, 0);

The first line of this code creates the matrix A and generates the random vector v that we will

use to scalarize the resolvent. The second line uses the Chebfun code chebpts to create a vector

of K = 32 Chebyshev points (1.14) in [−1, 1]. The third line computes the values of the scalarized

resolvent function at each interpolation point, storing the results in a vector fk. Finally, the fourth

line computes a linearized rational interpolant to these values with a denominator degree of 10. The

’type1’ argument to ratinterp specifies that we are working with data from a first-kind Chebyshev

grid, and the final 0 argument disables the aforementioned SVD-based robustness techniques, which

are not necessary for this demonstration. The poles that form our computed approximations to the

eigenvalues are stored in the output variable pol.

Approximations to the eigenvalues produced by a typical run of this code are displayed in Table

5.1. The eigenvalues at 0 and 0.9 are computed to only about five and seven digits of accuracy,
3This example was suggested by Grady Wright.

113

-1 -0.5 0 0.5 1
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Figure 5.1: Plot of the denominator of the rational interpolant whose roots were computed to
produce the eigenvalue approximations in Table 5.1.

respectively, and the accuracy is even worse for the eigenvalues in the middle of the spectrum.

Increasing the value ofK does not improve the accuracy, nor does enabling the SVD-based robustness

techniques in ratinterp. The computation has been spoiled by rounding error.

The reason for this behavior becomes apparent when we look at the denominator polynomial of

the rational interpolant, which is depicted in Figure 5.1. Observe how the polynomial is relatively

large on the left half of the interval, while on the right half, where the spectrum of A is concentrated,

it is nearly zero. (In fact, the values on the right half fluctuate near 10−8.) This large scaling of

the polynomial over the entire interval relative to its size on the half of the interval containing

the spectrum causes its roots to be badly conditioned, resulting in the poor approximations to the

eigenvalues we see in the table. In the polynomial rootfinding literature, this is sometimes referred

to as a “dynamic range” problem [17].

The example just given is admittedly manufactured; however, it is easy to imagine that similar

situations could arise in actual applications. Unfortunately, there seems to be little that can be

done to prevent this without some a priori knowledge of the spectrum of A. A better solution is

to avoid polynomial rootfinding altogether. Thus, we now modify the approach based on rational

interpolation by turning to a method based on Rayleigh–Ritz procedures and rational filters.

5.5 Rayleigh–Ritz Reformulation Using Rational Filters

5.5.1 The SS-RR Method

Sakurai and coworkers noticed similar instabilities to those just described in the SS-H algorithm

of [120] and devised an alternative version of their method based on a Rayleigh–Ritz procedure

to correct this [61, 121]. When applied to Hermitian matrices, their algorithm works as follows.

Given a vector v that is generic in the sense defined in Section 5.2, the method computes a basis

{v0, . . . , vs−1} for the invariant subspace corresponding to the eigenvalues of A within γ by computing

114

the projections of the vectors Ajv onto this eigenspace via the integrals

vj =
1

2πi

∫
γ

zj(A− zI)−1v dz, j = 0, . . . , s− 1. (5.5)

The vectors vj are then orthonormalized, and the resulting vectors are gathered as columns into a

matrix Q. The desired eigenvalues and eigenvectors are then obtained by solving the s×s eigenvalue

problem for the matrix Q∗AQ. Because of its use of a Rayleigh–Ritz procedure, we will refer to this

method as the SS-RR method.

5.5.2 Contour Integrals and Filter Functions

The key mechanism underlying the SS-H and SS-RR methods—and, indeed, all contour integral

methods—is that the contour integrals (5.2) and (5.5) compute a projection of a vector onto the

eigenspace of interest, since

P = − 1
2πi

∫
γ

(A− zI)−1 dz (5.6)

is the spectral projector associated with the eigenspace corresponding to the eigenvalues of A con-

tained within γ [68]. When we discretize (5.6) using a quadrature rule defined by K distinct nodes

z0, . . . , zK−1 and corresponding weights w0, . . . , wK−1, we obtain an approximate projector

P̂ =
K−1∑
k=0

wk(A− zkI)−1. (5.7)

Written another way, we have P̂ = H(A), where H is the rational function

H(z) =
K−1∑
k=0

wk

z − zk
. (5.8)

We call H the filter function associated with the method because it describes how (5.7) acts to filter

out undesired eigenvectors while retaining the rest. The points zk are the poles of the filter, and

the wk are the corresponding residues. If λ is an eigenvalue of A for which H(λ) is small, then

when P̂ acts on a vector v, it will reduce the components of v in the directions of eigenvectors of A

corresponding to λ.

Contour integral methods have been discussed from the viewpoint of rational filters in several

places in the literature. Sakurai and coworkers do this for the SS-H method in [62] and for SS-RR

in [61]. Tang and Polizzi do the same for FEAST in [130].

5.5.3 Filters Derived from Rational Interpolation

We will now show that the process of rational interpolation described in Section 5.3 for our scalarized

resolvent function also acts to filter the spectrum of A by a rational function. This is clear in the

case where the result from [6] mentioned at the end of Section 5.3 is applicable, for under those

conditions, rational interpolation is equivalent to the SS-H method based on discretized contour

115

integrals, and we have just shown that all discretized contour integrals have a rational filter behind

them. The easiest way to see that this is true for other choices of the interpolation nodes is to extend

the result from [6] to a more general setting.

Specifically, let f : C → C ∪ {∞} be a meromorphic function, let z0, . . . , zK−1 be K distinct

points in C that are not poles of f , and let w0, . . . , wK−1 ∈ C be nonzero. Let n ≥ 1, and consider

the following two computational procedures:

• Procedure (K):

1. Compute the quantities

µj =
K−1∑
k=0

wkz
j
kf(zk), j = 0, . . . , 2n− 1.

2. Form the Hankel matrices

Hn =


µ0 µ1 · · · µn−1

µ1 µ2 · · · µn

...
...

...
µn−1 µn · · · µ2n−2

 , H<
n =


µ1 µ2 · · · µn

µ2 µ3 · · · µn+1

...
...

...
µn µn+1 · · · µ2n−1

 .
3. Compute the eigenvalues, counted according to multiplicity, of the matrix pencil H<

n −

λHn.

• Procedure (R):

1. Compute the J ≤ K − 1 zeros η0, . . . , ηJ−1 of the rational function

H(z) =
K−1∑
k=0

wk

z − zk
.

2. Compute a linearized rational interpolant with maximum denominator degree n and max-

imum numerator degree m = K − n− 1 in the points z0, . . . , zK−1 to the function

g(z) =

J−1∏
j=0

(z − ηj)

 f(z).

3. Calculate the zeros, counted according to multiplicity, of the denominator polynomial of

the interpolant computed in step 2.

Procedure (K) is essentially a statement of the derivative-free Kravanja–Van Barel method after

discretization, applied to compute n poles. In its original formulation, zk and wk are, respectively,

the nodes and weights of some quadrature rule, but there is nothing in the statement of the result

that constrains them to be chosen in this way. Procedure (K) gives a way to apply the derivative-free

Kravanja–Van Barel method—and, hence, the SS-H method—with any rational filter of the form

we are considering. In Procedure (R), we compute the roots of the denominator polynomial of a

linearized rational interpolant to a modified version of f that incorporates the zeros of the filter. The

result we now prove asserts that these two methods are equivalent under one additional assumption.

116

Theorem 5.1. The matrix Hn of Procedure (K) is nonsingular if and only if the denominator

polynomial computed in Procedure (R) has degree exactly n. If these equivalent conditions hold, then

Procedure (K) and Procedure (R) yield identical results in exact arithmetic in step 3: the eigenvalues

computed in Procedure (K) are the same as the roots computed in Procedure (R).

The nonsingularity requirement precludes degenerate situations in which the pencil H<
n − λHn

of Procedure (K) has infinite eigenvalues or the denominator of the interpolant in Procedure (R)

has fewer than n roots.

Proof of Theorem 5.1. Let `(z) = (z − z0) · · · (z − zK−1) be the node polynomial for the points

z0, . . . , zK and ν0, . . . , νK−1 be the corresponding barycentric weights (see Section 1.2.2). Consider

the Hankel matrices

Ĥn =


h0 h1 · · · hn−1

h1 h2 · · · hn

...
...

...
hn−1 hn · · · h2n−2

 , Ĥ<
n =


h1 h2 · · · hn

h2 h3 · · · hn−1

...
...

...
hn hn−1 · · · h2n−1

 ,
where

hj =
K−1∑
k=0

νkz
j
kg(zk), j = 0, . . . , n− 1.

One can show [34, 46], [73, Theorems 1.2.2 and 2.3.4] that the denominator polynomial computed in

Procedure (R) has degree exactly n if and only if Ĥn is nonsingular and that if this is so, the roots

of this polynomial are given by solving the generalized eigenvalue problem for the pencil Ĥ<
n −λĤn.

Since H has poles at exactly the points zk and J zeros, we have H(z) = p(z)/`(z) for some

polynomial p of degree J . Using the barycentric formula (1.4) to represent p in terms of its values

at the points zk and dividing through by `(z), we find that

H(z) =
K−1∑
k=0

νkp(zk)
z − zk

.

It follows from the definition of H and the uniqueness of partial fraction representations that wk =

νkp(zk).

As the zeros of p are exactly the zeros ofH, we can factor p to obtain p(z) = α(z−η0) · · · (z−ηJ−1)

for some nonzero constant α. As g(z) = (p(z)/α)f(z), it follows that hj = µj/α for each j. Thus,

Ĥn = (1/α)Hn, so Ĥn is nonsingular if and only if Hn is, establishing the equivalence of the

conditions stated at the end of the theorem. Moreover, Ĥ<
n − λĤn = (1/α)(H<

n − λHn), and so

Procedure (R) reduces to the same generalized eigenvalue problem as Procedure (K), establishing

the claim that the two yield identical results in exact arithmetic.

The preceding discussion casts Theorem 5.1 as a way to associate a rational interpolation problem

with the use of a given rational filter, but we can also use it “in reverse” to determine the rational filter

117

-2 -1 0 1 2
10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

-2 -1 0 1 2
10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

Figure 5.2: Magnitudes on [−2, 2] of filters derived from rational interpolation in the Kth roots of
unity (left) and K first-kind Chebyshev points on [−1, 1] (right) for K = 16.

that underlies a given rational interpolation problem. In particular, we see that finding eigenvalues

of A by computing the poles of a rational interpolant to f(z) = u∗(A − zI)−1v, unmodified, in

distinct points, is equivalent to applying the SS-H method with a rational filter that has poles at

those same points and that has no zeros.

Thus, if the interpolation nodes are z0, . . . , zK−1, it follows that the rational filter implicitly

applied by rational interpolation is H(z) = α/`(z), where `(z) = (z − z0) · · · (z − zK−1) is the node

polynomial for the interpolation points and α is a nonzero constant. Expressing H in pole-residue

form, we have

H(z) = α

K−1∑
k=0

νk

z − zk
, (5.9)

where ν0, . . . , νK−1 are the barycentric weights corresponding to the interpolation nodes zk. This

can be seen, e.g., by taking p to be the constant polynomial p(z) = α in (1.4). Rational filters of this

form have the property that they achieve the maximum possible asymptotic decay rate as |z| → ∞

among all rational filters (5.8) with poles at the same points, an immediate consequence of the fact

that the numerator polynomial is a constant. When computing eigenvalues, this can be a desirable

property, as it ensures that the corresponding approximate spectral projector strongly attenuates

components of unwanted eigenvectors that are far from the region of interest.

As an example, if the points zk are the Kth roots of unity, then the corresponding node polyno-

mial is `(z) = zK −1, and the resulting filter is H(z) = 1/(zK −1), up to an arbitrary scaling factor.

For the K first-kind Chebyshev points (1.14) in [−1, 1], the node polynomial is `(z) = TK(z)/2K ,

where TK is the Kth degree Chebyshev polynomial of the first kind, defined at the beginning of

Section 1.2.4. Rescaling to eliminate the 2K factor, the filter is H(z) = 1/TK(z).

Graphs of the absolute values of these filters on [−2, 2] for K = 16 are shown in Figure 5.2.

Note that while both of these filters ultimately decay as O(z−K) as |z| → ∞, the filter associated

with the Chebyshev points decays much more rapidly immediately outside of [−1, 1]. This means

that approximate projectors based on it will do a much better job than the filter based on roots of

118

unity at suppressing components in the direction of eigenvectors corresponding to eigenvalues that

lie outside but close to [−1, 1]. This advantage is another reason to consider using methods based

on this filter instead of methods derived from discretized contour integrals.

5.5.4 Rayleigh–Ritz for the Chebyshev Interpolation Filter

Now that we have determined the filters that underlie methods based on rational interpolation,

we can remove the instabilities observed in Section 5.4 by replacing rational interpolation with a

Rayleigh–Ritz procedure based on the same filter. We proceed exactly as in the SS-RR method

described in Section 5.5.1, but instead of discretizing (5.5) to project v onto the eigenspace of

interest, we use the filter (5.9).

For the first-kind Chebyshev grid on [−1, 1] of length K defined by (1.14), the barycentric weight

νk corresponding to the point xk is given by (1.15). After rescaling to eliminate the 2K−1 factor,

the filter for rational interpolation on this grid may be written in pole-residue form as follows:

H(z) =
1
K

K−1∑
k=0

TK−1(xk)
z − xk

. (5.10)

Thus, in the notation of Section 5.5.1, to calculate the vectors vj that form the basis for the subspace

we use when applying the Rayleigh–Ritz procedure, we compute

vj =
1
K

K−1∑
k=0

TK−1(xk)xj
k(A− xkI)−1v, j = 0, . . . , s− 1. (5.11)

Note that the computation of these vectors requires the solution of exactly the same linear systems

as the algorithm based directly on rational interpolation presented previously. This reformulation

therefore does not require any significant additional work compared to the original method.

To show that this allows us to get around the instabilities described in Section 5.4, we rerun

the same example from that section using the new procedure. This can be accomplished with the

following MATLAB code:

A = diag([0:0.1:0.9, -10, 10]); I = eye(12); v = randn(12, 1);

K = 32; xk = chebpts(K, 1); wk = cos((K - 1)*acos(xk))/K;

V = zeros(12, 10); Y = zeros(12, K); e = ones(12, 1);

for k = 1:K, Y(:, k) = (A - xk(k)*I) \ v; end

for j = 0:1:9, V(:, j + 1) = sum((e*(wk.*xk.^j).’).*Y, 2); end

[Q, R] = qr(V, 0); D = sort(eig(Q’*A*Q));

The first three lines simply set up the problem and initialize a few variables for storing results.

The fourth line solves the systems at each of the Chebyshev points, storing the results in Y, and the

fifth line implements (5.11) to compute the basis, storing the results in V. In the last line, we form

the projected eigenvalue problem as described in Section 5.5.1.

The results of running this code with the same random vector v used in the demonstration of

Section 5.4 are shown Table 5.2. All 10 eigenvalues have been computed to full precision.

119

Computed eigenvalue Error

0.000000000000000 1.76×10−16

0.100000000000000 0.00×10+00

0.200000000000000 1.67×10−16

0.300000000000000 2.78×10−16

0.400000000000000 5.55×10−17

0.500000000000000 2.78×10−16

0.600000000000000 4.44×10−16

0.699999999999999 1.11×10−15

0.800000000000000 1.11×10−16

0.900000000000002 2.11×10−15

Table 5.2: Results of applying the reformulated method based on a Rayleigh–Ritz procedure to
the test problem of Section 5.4. All eigenvalues are computed to full accuracy. No instabilities are
observed.

5.5.5 Contour Integral Derivation of the Chebyshev Filter

While we arrived at the filter for rational interpolation in Chebyshev points via the equivalence

established in Theorem 5.1, it is worth observing that it can also be obtained as a limit of filters

derived from discretized contour integrals taken over certain ellipses that enclose the interval [−1, 1].

Before proceeding, we pause to outline an argument that shows this is the case.

Let Dr be the open disc in C with center 0 and radius r > 1. The ellipses we consider are the

Bernstein ellipses that have the points ±1 as their foci. We recall from Section 1.2.6 that for r > 1,

the Bernstein ellipse Er is the image J(Dr) of Dr under the Joukowski map J(z) = (z+ z−1)/2. As

r → 1 from above, these ellipses collapse down to [−1, 1].

If ψ0, . . . , ψK−1 are any K points that are equally spaced on the unit circle, then by transforming

the integral (5.6), taken over ∂Er, into one over ∂Dr via a change of variables using J and discretizing

the result using the trapezoidal rule in these points, we obtain

1
2πi

∫
∂Er

(A− zI)−1 dz ≈ 1
K

K−1∑
k=0

(rψk)
(
A− J(rψk)I

)−1
J ′(rψk).

Using the fact that J ′(z) = (z − z−1)/(2z) and letting r → 1, one can show via straightforward

computation that the filter obtained is

H(z) =
1
K

K−1∑
k=0

i Imψk

z − Reψk
.

Let ψk = xk + iTK−1(xk), 0 ≤ k ≤ K − 1. Another computation shows that ψK
k = i for each k, so

these points are the Kth roots of i and hence are equally spaced on the unit circle. Our filter then

becomes

H(z) =
i

K

K−1∑
k=0

TK−1(xk)
z − xk

,

which is the same as (5.10), apart from a factor of i.

120

5.5.6 General Rational Filters and Remarks on the Literature

The use of a Rayleigh–Ritz procedure in conjunction with a rational filter for computing eigenvalues

is not a new idea. For example, the shift-and-invert Arnoldi method [117], applied with a given shift

σ, can be thought of as filtering the spectrum with powers of the function 1/(z−σ). This observation

was extended by Ruhe to filters generated by arbitrary rational functions with his introduction of

rational Krylov methods [114] in the 1980s. Contour integral methods and the method we discuss

here are a particular type of rational Krylov method: they construct a rational Krylov subspace

using the quadrature nodes or, more generally, the filter poles as shifts and then extract approximate

eigenpairs from this subspace using the Rayleigh–Ritz technique. They differ from more traditional

rational Krylov methods in the mechanics of how they build the subspace. Unlike the rational

Arnoldi algorithm, which applies each shift to the starting vector in succession, these methods apply

the shifts simultaneously and then take linear combinations to form the result. Doing things the

latter way makes the method easier to parallelize, but all the shifts must be chosen in advance. In

contrast, a method that employs the former approach can choose the shifts adaptively [30, 139].

We arrived at the concept of a rational filter by considering how discretized contour integrals

and rational interpolation act on the resolvent, but it is not necessary to proceed in this way. It

is equally possible to begin directly with (5.8) and ask how to choose the poles zk and residues wk

to construct an effective filter. Eigenvalue algorithms based on rational filters have been explored

extensively from this viewpoint in the Japanese literature by Murakami [84, 85, 86, 87, 88, 89], who

refers to them as filter diagonalization methods. The term “filter diagonalization” comes from a

class of closely related algorithms introduced by Neuhauser in the 1990s for calculating eigenstates

of quantum mechanical systems that lie in a given energy interval [90, 91, 132, 142].

In [85], Murakami considers the problem of computing all the eigenvalues within a given real

interval of a matrix pencil A − λB, where A and B are both real symmetric and B is positive-

definite. After introducing the concept of filter diagonalization methods, he discusses the result

mentioned in Section 5.5.3 that one can obtain a filter H(z) that decays as rapidly as possible as

|z| → ∞ by taking the residues to be the barycentric weights of the corresponding poles (though he

does not appear to use exactly this language). Murakami actually proposes the use of the reciprocal

Chebyshev filter that we have been considering, justifying it using the minimality properties of

Chebyshev polynomials [133]. Ultimately, however, he sets it aside in favor of filters that have no

poles on the real axis (and hence require complex arithmetic to implement), owing to the potential

for numerical instabilities that can arise when one of the eigenvalues sought lies close to one of the

filter poles. Murakami proposes a fix for these instabilities in [86], which we will discuss in Section

5.6.1.

121

In [87, 88, 89], Murakami goes on to consider the use of rational filters based on the four “classic”

filter types used in analog circuit design [100]: Butterworth, Chebyshev, inverse Chebyshev,4 and

elliptic. Each of these filter types satisfies a different optimality condition with respect to certain

criteria, and hence each may be expected to perform particularly well in certain circumstances.

All of them have poles located off the real axis. Of these filters, the elliptic (also called Cauer or

Zolotarev) filter is especially noteworthy because of its ability to attain a sharper transition across

the boundary of the search interval than the other types. The price one pays for using this filter

is that it does not decay to zero at infinity. This makes it well-suited to problems for which there

are unwanted eigenvalues that lie outside but close to the interval of interest. On the other hand, if

the desired portion of the spectrum is fairly well-separated from the rest, one will typically achieve

greater accuracy by using a filter that decays at infinity. The use of elliptic filters in conjunction

with the FEAST algorithm has been considered in [140] and is explored further in [53].

One can also consider filters derived from rational interpolation on an interval in points other than

first-kind Chebyshev grids, i.e., filters which are reciprocals of polynomials other than Chebyshev

polynomials. Recall that we based our choice of the first-kind Chebyshev points on their suitability

for use as interpolation points, a property that stems from the fact that they cluster near the interval

endpoints [133]. If one uses a Rayleigh–Ritz-based approach instead of one based on interpolation,

one might imagine that this clustering property would be less important.

Nevertheless, we can still isolate two advantages to using the proposed filter based on the re-

ciprocal Chebyshev polynomial. First, Chebyshev polynomials grow rapidly immediately outside of

the interval [−1, 1] compared to other polynomials of the same degree [112]. This means that filters

based on their reciprocals will typically do a better job of suppressing unwanted eigenvalues outside

but close to the interval of interest than will filters with the same number of poles that achieve the

same asymptotic decay rate at infinity. We noted this advantage previously in Section 5.5.3 when

comparing the proposed filter to the one derived from rational interpolation in roots of unity (recall

Figure 5.2).

Second, the residues for the reciprocal Chebyshev filter, i.e., the barycentric weights for the first-

kind Chebyshev points, are roughly uniform in magnitude, and hence the terms in the pole-residue

expansion (5.10) are weighted roughly equally. Other point distributions may give rise to barycentric

weights that do not have this property; for instance, the weights for equispaced points vary by

factors which grow exponentially as the number of points increases [14]. Filters with the maximum

asymptotic decay rate derived from such points may thus excessively weight the contributions from

linear systems solved at some of the poles relative to others, potentially reducing accuracy.
4In spite of their names, the “Chebyshev” and “inverse Chebyshev” filters are not the same as the filters based

on the reciprocals of Chebyshev polynomials considered here.

122

Original filter Dropped pole
Eigenvalue Error Eigenvalue Error

0.049067674327428 7.6×10−17 0.049067674327428 1.7×10−16

0.100005648969141 5.6×10−06 0.100000000000000 2.4×10−16

0.200031541585367 3.2×10−05 0.200000000000000 8.3×10−17

0.300016487697101 1.6×10−05 0.300000000000000 3.9×10−16

0.411431339360006 1.1×10−02 0.400000000000000 5.6×10−17

0.502930792938639 2.9×10−03 0.500000000000000 2.2×10−16

0.600000216771745 2.2×10−07 0.599999999999998 2.4×10−15

0.700033492323077 3.3×10−05 0.699999999999999 1.4×10−15

0.800000015779351 1.6×10−08 0.800000000000000 1.1×10−16

0.900000000238297 2.4×10−10 0.899999999999999 1.1×10−15

Table 5.3: Eigenvalues and absolute errors for the example of Section 5.6.1 illustrating the handling
of eigenvalues that fall extremely close to filter poles.

5.6 Practical Considerations

In the preceding sections, we have presented these methods in their simplest possible forms. In this

section, we briefly discuss a few additional items which should be considered when realizing them

in practice.

5.6.1 Eigenvalues Near Filter Poles

The method we have proposed based on the use of the reciprocal Chebyshev polynomial filter draws

its strength from its placement of the filter poles within the interval of interest. While we have

shown that this can be advantageous, it also has a potential drawback. If it happens that one of

the eigenvalues of A, say λ, lies close to one of the filter poles, say, zk, then ‖(A − zkI)−1‖ will be

large. Hence, the solutions to the linear systems at zk will dominate those from the other poles,

and the resulting filtered vectors will have large components in the direction of the eigenvectors of

A corresponding to λ. If λ is sufficiently close to zk, these components can overwhelm those in the

directions of the other eigenvectors of A, degrading the accuracy of their computation and that of

their corresponding eigenvalues, though λ itself will be computed highly accurately.

As an illustration, we consider the same problem from Section 5.4 but with the eigenvalue of A

at 0 shifted to lie at the point cos(31π/64)+10−14. Furthermore, instead of taking A to be diagonal,

we set A = Q∗DQ, where D is a diagonal matrix of the specified eigenvalues and Q is a randomly

generated 12 × 12 orthogonal matrix. Since cos(31π/64) ≈ 0.049 belongs to the 32-point first-kind

Chebyshev grid on [−1, 1], A has an eigenvalue very close to one of the filter poles. The results of

running the same code from Section 5.5.4 with this new A are presented in the left half of Table 5.3.

The eigenvalue near cos(31π/64) has been computed to full accuracy, while the other eigenvalues,

especially those near the middle of the spectrum, have suffered badly.

As mentioned in Section 5.5.6, this phenomenon was noted by Murakami [85, 86], who refers

to it as a “resonance problem.” In [86], he presents two options for overcoming it: either drop

the offending poles from the filter or shift them to lie somewhere else. The former is simpler and

123

Distance to Pole (α)
10 -15 10 -10 10 -5

E
rr
or

in
E
ig
en
va
lu
e
at

0.
4

10 -15

10 -10

10 -5

10 0 Eig. Error
Residual

Distance to Pole (α)
10 -15 10 -10 10 -5

E
rr
or

in
E
ig
en
va
lu
e
at

0.
8

10 -15

10 -10

10 -5

10 0 Eig. Error
Residual

Figure 5.3: Behavior of residuals and errors in the eigenvalues at 0.4 (left) and 0.8 (right) as the
eigenvalue near cos(31π/64) in the example considered in Section 5.6.1 gets close to that point.

needs no extra linear solves but requires that one accept the use of a filter with a slower asymptotic

decay at infinity than that with which one began the computation. The latter does not have this

disadvantage, since it keeps the total number of poles the same, but it is more expensive, requiring

the solution of additional linear systems at the new poles. Murakami discusses these solutions in the

context of non-Hermitian eigenvalue problems. Nevertheless, it is clear that they are also applicable

in the Hermitian (and, in particular, the real symmetric) case, though he does not appear to mention

this explicitly.

Under either option, one will need to recompute the filter residues to ensure that the resulting

filter has the desired behavior. If one is working with filters of the type (5.9) and wishes to maintain

the property that the recomputed filter has the maximum possible asymptotic decay rate at infinity,

this amounts to calculating the barycentric weights for the new grid. Murakami provides explicit

formulas for doing this in [86], which he phrases as updates to the weights for the original grid.

Before one can move to address this problem, however, one must first determine whether it has

occurred. In [86], Murakami suggests looking at the factor by which application of the resolvent at

a given filter pole (via the solution of the corresponding linear system) magnifies the norm of the

starting vector and declaring the pole problematic if this factor exceeds a predetermined threshold.

One could also consider simply looking at the computed eigenvalues and seeing if any are close to

the filter poles; however, doing this may be subtle, as it is not clear how close an eigenvalue must be

to a pole to be considered “too close,” and the induced error may vary greatly between eigenvalues,

as the results in the left half of Table 5.3 demonstrate.

Nevertheless, we note that the distance which qualifies as “too close” may be even smaller than

one may expect at first, thanks to the Rayleigh quotient effect: an O(ε) error in an approximation

to an eigenvector induces an O(ε2) error in the Rayleigh-quotient estimate of the corresponding

eigenvalue [134]. If an eigenvalue is a relative distance α from a pole, then since the terms in the

partial fraction expansion for the filter function are inverse linear, we might anticipate induced errors

124

in the nonresonant eigenvectors on the order of εmα
−1, where εm is the machine epsilon, yielding

errors in the nonresonant eigenvalues on the order of ε2mα
−2. Thus, the errors in the eigenvalues due

to the resonance effect fall off rapidly as the distance α increases. This suggests that if one seeks to

compute only eigenvalues and not eigenvectors, then this problem may be less of a cause for concern

than it may seem initially.

These facts are illustrated in the plots of Figure 5.3, which we produced by varying the distance

α between the eigenvalue near cos(31π/64) and that point in the numerical example just discussed.

The solid lines show the errors in the approximations to the eigenvalues at 0.4 (left) and 0.8 (right),

and the dotted lines show the associated residuals, a measure of the error in the corresponding

eigenvectors. The dashed lines in both plots illustrate the decay rates of O(α−1) for the residuals

and O(α−2) for the eigenvalue errors. The error in the eigenvalue at 0.4 reaches the level of machine

precision for α larger than around 10−7, while for 0.8, this occurs for α as small as 10−10. The

residuals at these values are relatively large; however, if one is not concerned with approximating

the eigenvectors, this is not a problem.

Returning to our original numerical example and noting that the solution to the linear system

at the pole at cos(31π/64) has a norm larger than that of the starting vector by a factor on the

order of 1013, we conclude that a resonance problem has occurred and decide to correct it by simply

dropping this pole from the filter. Recalculating the barycentric weights using (1.5) and applying

the new filter, we obtain the results in the right half of Table 5.3. All eigenvalues have now been

obtained to full precision.

5.6.2 Determining the Subspace Size

In our descriptions above, we have made the assumption that the number s of eigenvalues within

the region of interest is known in advance and taken the dimension d of the subspace used for the

Rayleigh–Ritz procedure to be equal to this number. In practice, s will have to be calculated or esti-

mated in some way. For modest-size Hermitian eigenvalue problems, this can be accomplished using

the “spectrum slicing” technique based on Sylvester’s law of inertia and the LDL∗ decomposition

[101]. For larger problems, stochastic techniques have been developed that use contour integrals to

estimate the trace of the spectral projector onto the region of interest [27, 43]. It is not immediately

obvious how to extend these latter techniques to work with arbitrary rational filters because they

rely on the filter taking the same (or approximately the same) value at every eigenvalue in the search

region. Further investigation is needed.

Actually, all that is required is that d ≥ s, and it is often advantageous to take d to be larger than

s even when s is known exactly. This is especially helpful if the spectrum of A is not well-separated

so that there are eigenvalues close to but outside the search region that may not be adequately

suppressed by the filter. Increasing d has the effect of incorporating eigenvectors corresponding to

125

such eigenvalues within the search subspace so that they are computed instead of ignored. This

results in a larger projected eigenvalue problem and the need to solve additional linear systems if

block methods are used (see the next subsection). Nevertheless, the cost is typically far less than

would be required to solve the problem by adding more filter poles to achieve the desired level of

suppression. In [104], Polizzi suggests choosing d ≥ 1.5s as a rule of thumb.

While taking d to be too small yields poor results due to the influence of unwanted eigenvectors,

if d is too large, one will typically find that some of the computed eigenpairs are spurious and need

to be discarded. One way to deal with these is to check the residuals of the computed eigenpairs

and eliminate those which are large. This is essentially what is done in the version 2.1 release of

FEAST [130].

An alternative technique, proposed by Sakurai and coworkers [61, 62], uses the SVD to pare

down the search subspace prior to solving the projected eigenvalue problem. The basis vectors for

the subspace computed by applying the rational filter are gathered as columns into a matrix. One

then computes the reduced SVD of this matrix and replaces the original basis vectors with the left

singular vectors, omitting those corresponding to negligible singular values. This is very similar

both in spirit and in execution to the techniques employed by ratinterp for eliminating spurious

pole-zero pairs from rational interpolants briefly mentioned in Section 5.3.1. In [119], Sakurai and

coworkers propose further that this technique can be used to help detect when one’s initial choice

of the subspace dimension is too small: if none of the singular values are negligible, a larger basis is

probably needed.

5.6.3 Block Methods

If implemented exactly as described above, these methods cannot detect if an eigenvalue is deroga-

tory, i.e., if it has geometric multiplicity greater than one. For the SS-H and rational interpolation

methods, this follows from the fact that the scalarized resolvent (5.1) has only a simple pole at

each of the eigenvalues of A, even if some of those eigenvalues have non-unit multiplicity. From the

perspective of SS-RR, this occurs because the subspace is generated from the projected powers of A

applied to a single initial vector v.

This problem can be addressed by using multiple starting vectors to build the subspace. Sakurai

and coworkers introduced this technique for their algorithms in [61] and [62] under the name of the

“block Sakurai–Sugiura method,” while Polizzi used it from the outset in FEAST [104]. Doing this

requires one to solve additional linear systems at each filter pole, but since systems corresponding

to different starting vectors are independent, they can be solved in parallel.

Aside from being able to detect higher-multiplicity eigenvalues, an additional benefit to using

multiple starting vectors is that it allows one to use fewer projected powers of A when building the

subspace [62]. This is useful because higher powers weaken the filter. For instance, when using

126

(5.11) to apply the reciprocal Chebyshev polynomial filter we have been considering, the vector vj

is computed by filtering v with

Hj(z) =
1
K

K−1∑
k=0

xj
kTK−1(xk)
z − xk

=
zj

TK(z)
, 0 ≤ j ≤ K − 1,

where the second equality holds by (1.4). The higher the power j, the more slowly the filter decays

as |z| → ∞.

Allowing higher powers does, however, have the advantage of requiring fewer linear solves, so a

balance must be struck. To date, there is no consensus about how this is best accomplished. In

[119], Sakurai and coworkers propose the heuristic that the number of starting vectors be chosen so

that the number of powers (including the zero power) employed to build the subspace is at most

K/4. Polizzi, on the other hand, does not use higher powers at all in FEAST [104].

5.6.4 Outer Iteration

Finally, if the accuracy of the computed eigenpairs is not satisfactory, it can be improved by using

a simple iterative procedure: just take the computed eigenvectors (or some linear combination(s)

thereof) as starting vectors and repeat the process, filtering them to generate a new subspace and

applying the Rayleigh–Ritz procedure again to get a new set of eigenpairs. This idea was proposed by

Polizzi in [104] for FEAST, and it amounts to applying powers of the underlying filter or, equivalently,

subspace iteration [130]. The disadvantage to doing this is that an additional set of linear solves is

required for each iteration. Since the same filter is used each time, however, one can mitigate this

cost by computing the LU factors of the resolvent at each filter pole during the first pass and then

reusing them on subsequent passes.

5.7 Summary of the Proposed Algorithm

Taking into account some of the considerations discussed in the previous section, a practical version

of the algorithm we have been discussing based on the reciprocal Chebyshev polynomial filter might

proceed as follows:

1. Fix the matrix A and the search interval [a, b]. Choose the number K of filter poles and the

maximum number M of powers of A that will be used to build the search subspace. Let

x0, . . . , xK−1 be the filter poles given by (1.14), rescaled to lie in [a, b], and let ν0, . . . , νK−1 be

the corresponding barycentric weights.

2. Compute or estimate the number s of eigenvalues of A in [a, b], e.g., using Sylvester’s law of

inertia.

3. Decide the minimum dimension dmin ≥ s of the search subspace and calculate the number L

of starting vectors as L = ddmin/Me. The search subspace dimension is then d = ML.

127

Figure 5.4: Sparsity patterns for the matrices of the test problems considered in Section 5.8.

4. Generate L random starting vectors, and gather them as columns into an N × L matrix V .

5. Factor (A− xkI) = LkUk at each filter pole xk.

6. For each k, solve LkUkWk = V for Wk.

7. For each power 0 ≤ j ≤M − 1, calculate Rj =
∑K−1

k=0 xj
kνkWk. Let R =

[
R0 · · · RM−1

]
.

8. Factor R = XSY ∗ in an SVD. Let Q be the first r columns of X, where r is the number of

singular values of R greater than a chosen tolerance.

9. Compute the eigenvalues λj and corresponding eigenvectors yj of Q∗AQ. Discard those that

lie outside the search interval. The remaining λj are approximations to the desired eigenvalues

of A, and the vj = Qyj are the corresponding approximate eigenvectors.

10. If an eigenvalue λj is too close to a filter pole, adjust the filter using one of the strategies

outlined in Section 5.6.1 and return to step 7. Otherwise, proceed.

11. If greater accuracy is desired (as measured, e.g., by the size of the residuals of the approximate

eigenpairs), reassign the L columns of V to be suitably chosen linear combinations of the

vectors vj , and return to step 6.

5.8 Numerical Examples

We close with a pair of examples illustrating the application of the proposed algorithm to larger

problems. Our first test matrix A is the PARSEC/SiH4 matrix from the University of Florida Sparse

Matrix Collection [24]. A is real symmetric with dimensions 5041 × 5041, and it has 171,903 nonzero

entries. The sparsity pattern is shown in the left half of Figure 5.4.

We apply our method using the reciprocal Chebyshev polynomial filter with poles at 16 Cheby-

shev points of the first kind in [−1, 1]. Using the approach mentioned in Section 5.6.2 based on

128

Cheb. polynomial Midpoint rule Dense solver

−0.995566528834318 −0.995566528834321 −0.995566528834260
−0.625158654642699 −0.625158654642699 −0.625158654642678
−0.625158654640977 −0.625158654640979 −0.625158654640871
−0.625158654638943 −0.625158654638941 −0.625158654638861

0.034524054616914 0.034524054616922 0.034524054616893
0.034524054618691 0.034524054618692 0.034524054618906
0.034524054620245 0.034524054620246 0.034524054620210
0.045410512335108 0.045410512335109 0.045410512335284
0.176963580133752 0.176963580133772 0.176963580133777
0.176963580137865 0.176963580137871 0.176963580138021

Table 5.4: Selected eigenvalues for the PARSEC/SiH4 test problem of Section 5.8. Figures in each
row that are the same in all three columns are underlined.

Cheb. polynomial Midpoint rule Dense solver

38 s 63 s 420 s

Table 5.5: Computation times on a single processor for the PARSEC/SiH4 test problem of Section
5.8. Use of multiple processors would allow a speedup of the first two figures by a factor of up to 16.

Sylvester’s law of inertia, we find that A has 35 eigenvalues in [−1, 1]. We take the dimension d

of our search subspace to be 72, roughly twice this value. We use a block Sakurai–Sugiura-like

approach (see Section 5.6.3) using 16/4 = 4 powers of A, following the rule of thumb from [119],

and 72/4 = 18 starting vectors. We do not employ any form of outer iteration (see Section 5.6.4).

Our computations were carried out in MATLAB R2013a on 1 core of a machine with twin 8-core

Intel Xeon processors, clocked at 2.7 GHz, and 256 GB of RAM. The results are shown in Tables

5.4 and 5.5.

Table 5.4 displays a selection of the eigenvalues in [−1, 1] (specifically, the lowest 10) computed by

each of three methods. The results for the remaining eigenvalues are similar. The leftmost column

shows those computed by the method just described. For comparison, the middle column shows

approximations to the same eigenvalues computed using the same procedure but using a contour

integral method based on applying the midpoint rule in 32 points (i.e., the trapezoidal rule in 32

roots of unity, shifted along the unit circle by an angle of π/32), exploiting the symmetry to require

only 16 linear solves. This is the same as the number of solves required by the reciprocal Chebyshev

filter, but they require complex arithmetic. Finally, this problem is small enough that dense methods

can solve it in a reasonable amount of time, and the results of using MATLAB’s built-in eig function

are shown in the rightmost column. Digits in each eigenvalue that were computed the same for all

three methods are underlined. All methods agree to at least 10 digits on all eigenvalues.

For our second example, we take A to be the GHS indef/olesnik0 test matrix, also from the

University of Florida Sparse Matrix Collection. This real symmetric matrix has dimensions 88,263

× 88,263 and 744,216 nonzero entries. Its sparsity pattern is plotted in the right half of Figure 5.4.

We search for the eigenvalues of A in [1.005, 1.010], again using the reciprocal Chebyshev poly-

nomial filter with poles at 16 Chebyshev points of the first kind. Employing Sylvester’s law, we find

129

Cheb. polynomial Midpoint rule eigs

Eigenvalue Residual Eigenvalue Residual Eigenvalue Residual

1.005045284020284 8.4×10−09 1.005045284020280 2.6×10−10 1.005045284020283 5.4×10−13

1.005103490546754 3.4×10−10 1.005103490546747 4.7×10−10 1.005103490546746 7.5×10−13

1.005242127920682 8.1×10−10 1.005242127920672 4.1×10−10 1.005242127920671 4.7×10−13

1.005379305986318 4.4×10−09 1.005379305986315 3.5×10−10 1.005379305986314 2.0×10−12

1.005441288487731 5.0×10−09 1.005441288487725 2.9×10−10 1.005441288487726 5.3×10−13

1.005502251201476 4.1×10−09 1.005502251201470 4.4×10−10 1.005502251201470 2.4×10−13

1.005588537196233 2.1×10−10 1.005588537196231 2.6×10−10 1.005588537196233 3.4×10−13

1.005691187808958 4.2×10−09 1.005691187808951 3.3×10−10 1.005691187808950 1.8×10−12

1.005875698341051 1.3×10−09 1.005875698341042 4.6×10−10 1.005875698341042 1.6×10−12

1.006254446406822 1.8×10−09 1.006254446406818 5.4×10−10 1.006254446406822 1.1×10−12

Table 5.6: Selected eigenvalues and residuals for the GHS indef/olesnik0 test problem of Section 5.8.
Figures in the eigenvalues that are the same for all three methods are underlined.

Cheb. polynomial Midpoint rule eigs

42 s 61 s 11 s

Table 5.7: Computation times on a single processor for the GHS indef/olesnik0 test problem of
Section 5.8. Again, the use of multiple processors would allow a speedup of the first two figures.

that there are 44 eigenvalues of A in this interval. We take the search subspace dimension to be 88

and use 22 starting vectors, again limiting the number of powers of A to 4. This time, we employ

one step of outer iteration to refine the eigenpairs.

Ten of the computed eigenvalues and their 2-norm relative residuals (defined for an approximate

eigenvalue λ and corresponding eigenvector v as ‖Av − λv‖/‖Av‖) are displayed in the first two

columns of Table 5.6. As with the previous example, we have also computed the same eigenvalues

using an equivalent contour integral method based on the midpoint rule that requires the same

number of linear solves. Finally, we performed the computation a third time using MATLAB’s

eigs function, based on ARPACK [75], to search for 44 eigenvalues near 1.0075, the midpoint of

the target interval. All three methods agree to at least 10 digits in the displayed eigenvalues. The

maximum residual for all eigenvalues computed using the reciprocal Chebyshev polynomial filter,

including those not displayed in the table, is 2.1× 10−8. For the midpoint rule, it is 2.2× 10−7. For

eigs, it is 2.1× 10−12

Timings for each of the methods applied to this problem are given in Table 5.7. The values all

include the time required to count the eigenvalues in the search interval using Sylvester’s law. As

before, the method based on the reciprocal Chebyshev polynomial is faster than the one based on

the midpoint rule, though the speedup is closer to a factor of 1.5 for this problem instead of 2.

MATLAB’s eigs is considerably faster than both; however, as in the previous example, since we are

using only one core for our computations, we are not taking full advantage of the parallelism offered

by the other methods. As before, these methods can be sped up by approximately a factor of 16,

making their timings much more competitive.

130

Chapter 6

Conclusion

In the preceding chapters, we have presented three new contributions to the fields of interpolation

and numerical analysis. In Chapter 2, we studied the numerical stability of the barycentric formula

for trigonometric interpolation, finding that it possesses a subtle instability that we then showed

how to correct. In Chapters 3 and 4, we studied the problem of trigonometric interpolation in

perturbed equispaced grids. We proved that the Lebesgue constant for trigonometric interpolation

in such grids grows at a rate that is at most algebraic, allowing us to prove theorems—to our

knowledge, the first to appear in the literature—about the convergence of the interpolants and the

corresponding quadrature scheme. While the results we were able to prove are likely not optimal,

we formed conjectures, backed by extensive numerical evidence, as to what the optimal results

may be. Finally, in Chapter 5, we showed how rational interpolation can be used as the basis for

an algorithm for solving large-scale real symmetric eigenvalue problems that enjoys the same high

degree of parallelism as existing methods based on contour integrals but uses only real arithmetic,

saving a factor of two in computation time and storage.

There are many ways in which this work could be profitably continued. The conjectures in

Chapter 3 present several direct opportunities for further work. While we believe that resolving these

conjectures will be challenging, we also believe that they are tractable, and the process of resolving

them may suggest further new ideas. Furthermore, all the statements in Chapter 3 possess analogues

for polynomial interpolation, and examining these could form the basis for another potentially useful

investigation. Another, more ambitious project might involve examining what extensions there are,

if any, of the results in Chapter 3 for interpolation in two and three dimensions.

The material of Chapter 5 is also rife with opportunities for extension. We presented an example

of a rational filter that is useful for symmetric (or, more generally, Hermitian) eigenvalue problems,

but it is not clear that it is the “best” such filter, nor is it even clear what “best” might mean in

this context. One possible avenue for research would be to explore techniques for designing rational

filters both for general use and tailored for specific eigenvalue problems that arise in applications.

More generally, one could consider designing filters for non-Hermitian or even nonlinear eigenvalue

131

problems. There is some existing literature on designing filters for the latter [4, 5, 15, 137, 138], but

there is still plenty of work to be done. Other possible projects include performing a careful study

of the effects of using iterative methods to solve the linear systems involved (mandatory for very

large problems) and developing extensions of rational filtering methods for solving multiparameter

eigenvalue problems. The former would be especially useful from the point of view of a practitioner,

while the latter would yield a new, highly parallel method for finding the solutions to systems of

polynomial equations that lie in a given region in Cn.

132

Bibliography

[1] L. V. Ahlfors, Complex Analysis, McGraw-Hill, Inc., 3rd ed., 1979.

[2] A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-

invariant spaces, SIAM Rev., 43 (2001), pp. 585–620.

[3] A. Almansa, Échantillonnage, interpolation et détection. Applications en imagerie satelli-

taire., Ph.D. thesis, École Normale Supérieure de Cachan, 2002.

[4] J. Asakura, T. Sakurai, H. Tadano, T. Ikegami, and K. Kimura, A numerical method

for nonlinear eigenvalue problems using contour integrals, JSIAM Lett., 1 (2009), pp. 52–55.

[5] , A numerical method for polynomial eigenvalue problems using contour integral, Jpn. J.

Ind. Appl. Math., 27 (2010), pp. 73–90.

[6] A. P. Austin, P. Kravanja, and L. N. Trefethen, Numerical algorithms based on ana-

lytic function values at roots of unity, SIAM J. Numer. Anal., 52 (2014), pp. 1795–1821.

[7] A. P. Austin and L. N. Trefethen, Computing eigenvalues of real symmetric matrices

with rational filters in real arithmetic, SIAM J. Sci. Comput., 37 (2015), pp. A1365–A1387.

[8] A. P. Austin and K. Xu, On the numerical stability of the second barycentric formula for

trigonometric interpolation in shifted equispaced points. To appear in IMA J. Numer. Anal.,

2016.

[9] K. I. Babenko, On conjugate functions, Dokl. Akad. Nauk SSSR, 62 (1948), pp. 157–160.

[10] Z. Battles and L. N. Trefethen, An extension of MATLAB to continuous functions and

operators, SIAM J. Sci. Comput., 25 (2004), pp. 1743–1770.

[11] S. Bernstein, Sur la meilleure approximation de |x| par des polynomes de degrés donnés,

Acta Math., 37 (1914), pp. 1–57.

[12] J.-P. Berrut, Baryzentrische Formeln zur Trigonometrischen Interpolation (I), Z. Angew.

Math. Phys., 35 (1984), pp. 91–105.

133

[13] , Baryzentrische Formeln zur Trigonometrischen Interpolation (II): Stabilität und An-

wendung auf die Fourieranalyse bei ungleichabständigen Stützstellen, Z. Angew. Math. Phys.,

35 (1984), pp. 193–205.

[14] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev., 46

(2004), pp. 501–517.

[15] W.-J. Beyn, An integral method for solving nonlinear eigenvalue problems, Linear Algebra

Appl., 436 (2012), pp. 3839–3863.

[16] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, Julia: A fast dynamic lan-

guage for technical computing, (2012). arXiv:1209.5145v1 [cs.PL].

[17] J. P. Boyd, Finding the zeros of a univariate equation: Proxy rootfinders, Chebyshev inter-

polation, and the companion matrix, SIAM Rev., 55 (2013), pp. 375–396.

[18] L. Brutman, On the Lebesgue function for polynomial interpolation, SIAM J. Numer. Anal.,

15 (1978), pp. 694–704.

[19] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math., 116

(1966), pp. 135–157.

[20] E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.

[21] E. W. Cheney and T. J. Rivlin, A note on some Lebesgue constants, Rocky Mountain J.

Math, 6 (1976), pp. 435–440.

[22] J. H. Curtiss, A stochastic treatment of some classical interpolation problems, in Proceedings

of the Fourth Berkeley Symposium on Mathematics and Probability, Volume 2: Contributions

to Probability Theory, 1961, pp. 79–93.

[23] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New

York, 2nd ed., 1984.

[24] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans.

Math. Software, 38 (2011), pp. 1:1–1:25.

[25] C. de Boor and A. Pinkus, Proof of the conjectures of Bernstein and Erdös concerning the

optimal nodes for polynomial interpolation, J. Approx. Theory, 24 (1978), pp. 289–303.

[26] C.-J. de la Vallée Poussin, Sur la convergence des formules d’interpolation entre ordonnées

équidistantes, Acad. Roy. Belg. Bull. Cl. Sci., (1908), pp. 319–410.

[27] E. Di Napoli, E. Polizzi, and Y. Saad, Efficient estimation of eigenvalue counts in an

interval. Submitted to Numer. Linear Algebra Appl., 2014.

134

[28] T. A. Driscoll and N. Hale, Rectangular spectral collocation, 36 (2016), pp. 108–132.

[29] T. A. Driscoll, N. Hale, and L. N. Trefethen, eds., Chebfun Guide, Pafnuty Publica-

tions, Oxford, 2014.

[30] V. Druskin and V. Simoncini, Adaptive rational Krylov subspaces for large-scale dynamical

systems, Systems Control Lett., 60 (2011), pp. 546–560.

[31] R. J. Duffin and J. J. Eachus, Some notes on an expansion theorem of Paley and Wiener,

Bull. Amer. Math. Soc., 48 (1942), pp. 850–855.

[32] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer.

Math. Soc., 72 (1952), pp. 341–366.

[33] M. Dupuy, Le calcul numérique des fonctions par l’interpolation barycentrique, C. R. Acad.

Sci., 226 (1948), pp. 158–159.

[34] Ö. Eg̃eciog̃lu and Ç. K. Koç, A fast algorithm for rational interpolation via orthogonal

polynomials, Math. Comp., 53 (1989), pp. 249–264.

[35] H. Ehlich and K. Zeller, Auswertung der Normen von Interpolationsoperatoren, Math.

Ann., 164 (1966), pp. 105–112.

[36] P. Erdös, Problems and results on the theory of interpolation. II, Acta Math. Acad. Sci.

Hung., 12 (1961), pp. 235–244.

[37] P. Erdös and P. Vértesi, On the almost everywhere divergence of Lagrange interpolatory

polynomials for arbitrary system of nodes, Acta Math. Acad. Sci. Hung., 36 (1980), pp. 71–89.

Erratum: [38].

[38] , Correction of some misprints in our paper, Acta Math. Acad. Sci. Hung., 38 (1981),

p. 263.

[39] G. Faber, Über die interpolatorische Darstellung stetiger Funktionen, Jahresber. Dtsch.

Math.-Ver., 23 (1914), pp. 192–210.

[40] G. Facciolo, A. Almansa, J.-F. Aujol, and V. Caselles, Irregular to regular sampling,

denoising, and deconvolution, Multiscale Model. Simul., 7 (2009), pp. 1574–1608.

[41] L. Fejér, Interpolation und konforme Abbildung, Gött. Nachr., (1918), pp. 319–331.

[42] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, MPFR: A

multiple-precision binary floating-point library with correct rounding, ACM Trans. Math. Soft-

ware, 33 (2007), pp. 13:1–13:15.

135

[43] Y. Futamura, H. Tadano, and T. Sakurai, Parallel stochastic estimation method of

eigenvalue distribution, JSIAM Lett., 2 (2010), pp. 127–130.

[44] D. Gaier, Lectures on Complex Approximation, Birkhäuser, 1987.

[45] C. F. Gauss, Theoria interpolationis methodo nova tractata, in Werke, Vol. III, Dieterich,

Göttingen, 1866, pp. 265–327.

[46] L. Gemignani, Rational interpolation via orthogonal polynomials, Comput. Math. Appl., 26

(1993), pp. 27–34.

[47] S. Goedecker, Low complexity algorithms for electronic structure calculations, J. Comput.

Phys., 118 (1995), pp. 261–268.

[48] , Linear scaling electronic structure methods, Rev. Modern Phys., 71 (1999), pp. 1085–

1123.

[49] P. Gonnet, S. Güttel, and L. N. Trefethen, Robust Padé approximation via SVD,

SIAM Rev., 55 (2013), pp. 101–117.

[50] P. Gonnet, R. Pachón, and L. N. Trefethen, Robust rational interpolation and least-

squares, Electron. Trans. Numer. Anal., 38 (2011), pp. 146–167.

[51] I. J. Good, The colleague matrix, a Chebyshev analogue of the companion matrix, Quart. J.

Math., 2 (1961), pp. 61–68.

[52] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Elsevier,

Burlington, MA, 7th ed., 2007.

[53] S. Güttel, E. Polizzi, P. T. P. Tang, and G. Viaud, Zolotarev quadrature rules and load

balancing for the FEAST eigensolver, SIAM J. Sci. Comput., 37 (2015), pp. A2100–A2122.

[54] N. Hale and L. N. Trefethen, New quadrature formulas from conformal maps, SIAM J.

Sci. Comput., 46 (2008), pp. 930–948.

[55] P. Henrici, Barycentric formulas for interpolating trigonometric polynomials and their con-

jugates, Numer. Math., 33 (1979), pp. 225–234.

[56] J. R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations, Oxford Uni-

versity Press, Oxford, 1996.

[57] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 2nd ed.,

2002.

136

[58] , The numerical stability of barycentric Lagrange interpolation, IMA J. Numer. Anal., 24

(2004), pp. 547–556.

[59] E. Hlawka, Interpolation analytishcer Funktionen auf dem Einheitskreis, in Number Theory

and Analysis, P. Turán, ed., Plenum, New York, NY, 1969, pp. 99–118.

[60] IEEE, IEEE Standard for Floating-Point Arithmetic. IEEE Std. 754-2008, 2008.

[61] T. Ikegami and T. Sakurai, Contour integral eigensolver for non-Hermitian systems: A

Rayleigh-Ritz-type approach, Taiwanese J. Math., 14 (2010), pp. 825–837.

[62] T. Ikegami, T. Sakurai, and U. Nagashima, A filter diagonalization for generalized eigen-

value problems based on the Sakurai-Sugiura projection method, J. Comput. Appl. Math., 233

(2010), pp. 1927–1936.

[63] D. Jackson, Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale

Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Ph.D. thesis,

University of Göttingen, 1911.

[64] , On approximation by trigonometric sums and polynomials, Trans. Amer. Math. Soc.,

13 (1912), pp. 491–515.

[65] C. G. J. Jacobi, Disquisitiones Analyticae de Fractionibus Simplicibus, Ph.D. thesis, Uni-

veristy of Berlin, 1825.

[66] M. I. Kadec, The exact value of the Paley-Wiener constant, Soviet Math. Dokl., 5 (1964),

pp. 559–561.

[67] L. Kalmár, Über Interpolation, Mat. Fiz. Lapok, (1926), pp. 120–149.

[68] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, NY, 1966.

[69] Y. Katznelson, An Introduction to Harmonic Analysis, Cambridge University Press, Cam-

bridge, U.K., 3rd ed., 2004.

[70] O. Kis, On the convergence of the trigonometrical and harmonical interpolation, Acta Math.

Acad. Sci. Hung., 7 (1956), pp. 173–200.

[71] V. A. Kotel’nikov, On the transmission capacity of the “ether” and wire in electrocommu-

nications, in Material for the First All-Union Conference on Questions of Communication, Izd.

Red. Upr. Svyazi RKKA, Moscow, 1933. Reprinted in Modern Sampling Theory: Mathematics

and Applications, J. J. Benedetto and P. J. S. G. Ferreira, eds., Springer, New York, 2001, pp.

27–45.

137

[72] P. Kravanja and M. Van Barel, A derivative-free algorithm for computing zeros of analytic

functions, Computing, 63 (1999), pp. 69–91.

[73] , Computing the Zeros of Analytic Functions, Springer, New York, 2000.

[74] C. Labreuche, Problèmes Inverses en Diffraction d’Ondes Basés sur la Notion de Résonance,

Ph.D. thesis, Université de Paris IX, 1997.

[75] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK User’s Guide: Solution of Large

Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia,

1998.

[76] E. Levin and E. B. Saff, Potential theoretic tools in polynomial and rational approxima-

tion, in Harmonic Analysis and Rational Approximation: Their Rôles in Signals, Control and

Dynamical Systems, J.-D. Fournier, J. Grimm, J. Leblond, and J. R. Partington, eds., vol. 327

of Lecture Notes in Control and Information Science, Springer, Berlin, 2006, pp. 71–94.

[77] N. Levinson, On non-harmonic Fourier series, Ann. of Math. (2), 37 (1936), pp. 919–936.

[78] J. Marcinkiewicz, Quelques remarques sur l’interpolation, Acta Sci. Math. (Szeged), 8 (1936-

7), pp. 127–130.

[79] W. F. Mascarenhas, The stability of barycentric interpolation at the Chebyshev points of

the second kind, Numer. Math., 128 (2014), pp. 265–300.

[80] W. F. Mascarenhas and A. P. de Camargo, The effects of rounding errors in the nodes

on barycentric interpolation, (2016). To appear in Numer. Math.

[81] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, CRC Press, Boca Raton,

2003.

[82] E. Meijering, A chronology of interpolation: From ancient astronomy to modern signal and

image processing, Proc. IEEE, 90 (2002), pp. 319–342.

[83] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,

G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of Floating-Point Arith-

metic, Birkhäuser, Boston, 2010.

[84] H. Murakami, An experiment of the filter diagonalization method for the banded generalized

symmetric-definite eigenproblem, IPSJ SIG Technical Report 59 (2007-HPC-110), Information

Processing Society of Japan, June 2007.

[85] , A filter diagonalization method by the linear combination of resolvents, IPSJ Trans.

Adv. Comput. Syst., 49 (2008), pp. 66–87.

138

[86] , The filter diagonalization method for the unsymmetric matrix eigenproblem, IPSJ SIG

Technical Report 43 (2008-HPC-115), Information Processing Society of Japan, May 2008.

[87] , Experiments of filter diagonalization method for real symmetric definite generalized

eigenproblems by the use of elliptic filters, IPSJ SIG Technical Report 1 (2010-HPC-125),

Information Processing Society of Japan, June 2010.

[88] , Filter designs for the symmetric eigenproblems to solve eigenpairs whose eigenvalues

are in the specified interval, IPSJ Trans. Adv. Comput. Syst., 3 (2010), pp. 1–21.

[89] , Optimization of bandpass filters for eigensolver, IPSJ SIG Technical Report 3 (2010-

HPC-124), Information Processing Society of Japan, February 2010.

[90] D. Neuhauser, Bound state eigenfunctions from wave packets: Time → energy resolution, J.

Chem. Phys., 93 (1990), pp. 2611–2616.

[91] , Time-dependent reactive scattering in the presence of narrow resonances: Avoiding long

propagation times, J. Chem. Phys., 95 (1991), pp. 4927–4932.

[92] D. J. Newman, Rational approximation to |x|, Michigan Math. J., 11 (1964), pp. 11–14.

[93] J. Ortega-Cerdà and K. Seip, Fourier frames, Ann. of Math. (2), 155 (2002), pp. 789–806.

[94] M. L. Overton, Numerical Computing with IEEE Floating Point Arithmetic, SIAM, Philadel-

phia, 2001.

[95] J. C. Oxtoby, Measure and Category, Springer-Verlag, New York, 1971.

[96] R. Pachón, Algorithms for Polynomial and Rational Approximation, Ph.D. thesis, University

of Oxford, 2010.

[97] R. Pachón, P. Gonnet, and J. Van Deun, Fast and stable rational interpolation in roots

of unity and Chebyshev points, SIAM J. Numer. Anal., 50 (2012), pp. 1713–1734.

[98] R. Pachón and L. N. Trefethen, Barycentric-Remez algorithms for best polynomial ap-

proximation in the chebfun system, BIT, 49 (2009), pp. 721–741.

[99] R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, vol. XIX

of American Mathematical Society Colloquium Publications, AMS, New York, 1934.

[100] T. W. Parks and C. S. Burrus, Digital Filter Design, Wiley, New York, 1987.

[101] B. N. Parlett, The Symmetric Eigenvalue Problem, SIAM, Philadelphia, 1998.

[102] B. S. Pavlov, Basicity of an exponential system and Muckenhoupt’s condition, Soviet Math.

Dokl., 20 (1979), pp. 655–659.

139

[103] A. Pinkus, Weierstrass and approximation theory, J. Approx. Theory, 107 (2000), pp. 1–66.

[104] E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B, 79

(2009), pp. 11512:1–6.

[105] G. Pólya, Über die Konvergenz von Quadraturverfahren, Math. Z., 37 (1933), pp. 264–286.

[106] H.-J. Rack and M. Reimer, The numerical stability of evaluation schemes for polynomials

based on the Lagrange interpolation form, BIT, 22 (1982), pp. 101–107.

[107] T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cam-

bridge, 1995.

[108] E. Remes, Sur le calcul effectif des polynomes d’approximation de Tchebichef, C. R. Acad.

Sci., 199 (1934), pp. 337–340.

[109] , Sur un procédé convergent d’approximations successives pour déterminer les polynomes

d’approximation, C. R. Acad. Sci., 198 (1934), pp. 2063–2065.

[110] M. Riesz, Eine trigonometrische Interpolationsformel und einige Ungleichungen für Poly-

nome, Jahresber. Dtsch. Math.-Ver., 23 (1914), pp. 354–368.

[111] , Formule d’interpolation pour la dérivée d’un polynome trigométrique, C. R. Acad. Sci.,

158 (1914), pp. 1152–1154.

[112] T. J. Rivlin, The Chebyshev Polynomials, Wiley, New York, 1974.

[113] W. Rudin, Real and Complex Analysis, McGraw-Hill, Inc., Boston, 3rd ed., 1987.

[114] A. Ruhe, Rational Krylov sequence methods for eigenvalue computation, Linear Algebra Appl.,

58 (1984), pp. 391–405.

[115] C. Runge, Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordi-

naten, Z. Math. Phys., 46 (1901), pp. 224–243.

[116] H. Rutishauser, Vorlesungen über numerische Mathematik, vol. 1, Birkhäuser Verlag, Basel,

1976.

[117] Y. Saad, Numerical Methods for Large Eigenvalue Problems, SIAM, Philadelphia, 2011.

[118] E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer-Verlag,

Berlin, 1997.

[119] T. Sakurai, Y. Futamura, and H. Tadano, Efficient parameter estimation and imple-

mentation of a contour integral-based eigensolver, J. Algorithms Comput. Technol., 7 (2013),

pp. 249–269.

140

[120] T. Sakurai and H. Sugiura, A projection method for generalized eigenvalue problems using

numerical integration, J. Comput. Appl. Math., 159 (2003), pp. 119–128.

[121] T. Sakurai and H. Tadano, CIRR: A Rayleigh-Ritz type method with contour integral for

generalized eigenvalue problems, Hokkaido Math. J., 36 (2007), pp. 745–757.

[122] H. E. Salzer, Coefficients for facilitating trigonometric interpolation, J. Math. and Phys.,

27 (1948), pp. 274–278.

[123] , New formulas for trigonometric interpolation, J. Math. and Phys., 39 (1960), pp. 83–96.

[124] , Lagrangian interpolation at the Chebyshev points xn,ν ≡ cos(νπ/n), ν = 0(1)n; some

unnoted advantages, Comput. J., 15 (1972), pp. 156–159.

[125] A. Schönhage, Fehlerfortpflanzung bei Interpolation, Numer. Math., 3 (1961), pp. 62–71.

[126] C. E. Shannon, Communication in the presence of noise, Proc. IRE, 37 (1949), pp. 10–21.

[127] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM

J. Matrix Anal. Appl., 13 (1992), pp. 357–385.

[128] J. Szabados and P. Vértesi, Interpolation of Functions, World Scientific, Singapore, 1990.

[129] G. Szegö, Orthogonal Polynomials, vol. XXIII of American Mathematical Society Colloquium

Publications, AMS, New York, 1959.

[130] P. T. P. Tang and E. Polizzi, FEAST as a subspace iteration eigensolver accelerated by

approximate spectral projection, SIAM J. Sci. Comput., (2014), pp. 354–390.

[131] W. J. Taylor, Method of Lagrangian curvilinear interpolation, J. Res. Nat. Bur. Stand., 35

(1945), pp. 151–155.

[132] S. Toledo and E. Rabani, Very large electronic structure calculations using an out-of-core

filter-diagonalization method, J. Comput. Phys., 180 (2002), pp. 256–269.

[133] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia,

2013.

[134] L. N. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.

[135] L. N. Trefethen and J. A. C. Weideman, The exponentially convergent trapezoidal rule,

SIAM Rev., 56 (2014), pp. 385–458.

[136] A. H. Turetskii, The bounding of polynomials prescribed at equally distributed points, Proc.

Pedag. Inst. Vitebsk, 3 (1940), pp. 117–127.

141

[137] M. Van Barel, Designing rational filter functions for solving eigenvalue problems by contour

integration, Linear Algebra Appl., 502 (2016), pp. 346–365.

[138] M. Van Barel and P. Kravanja, Nonlinear eigenvalue problems and contour integrals, J.

Comput. Appl. Math., 292 (2016), pp. 526–540.

[139] R. Van Beeumen, K. Meerbergen, and W. Michiels, A rational Krylov method based

on Hermite interpolation for nonlinear eigenvalue problems, SIAM J. Sci. Comput., 35 (2013),

pp. A327–A350.

[140] G. Viaud, The FEAST Algorithm for Generalised Eigenvalue Problems, M.Sc. thesis, Univer-

sity of Oxford, Oxford, UK, 2012.

[141] F. T. A. W. Wajer, G. H. L. A. Stijnman, M. Bourgeois, D. Graveron-Demilly,

and D. van Ormondt, Magnetic resonance image reconstruction from nonuniformly sam-

pled k-space data, in Nonuniform Sampling: Theory and Practice, F. Marvasti, ed., Kluwer

Academic/Plenum Publishers, New York, 2001, pp. 439–478.

[142] M. R. Wall and D. Neuhauser, Extraction, through filter-diagonalization, of general quan-

tum eigenvalues or classical normal mode frequencies from a small number of residues or a

short-time segment of a signal. I. Theory and application to a quantum-dynamics model, J.

Chem. Phys., 102 (1995), pp. 8011–8022.

[143] J. L. Walsh, Note on polynomial interpolation to analytic functions, Proc. Natl. Acad. Sci.

USA, 19 (1933), pp. 959–963.

[144] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Do-

main, vol. XX of American Mathematical Society Colloquium Publications, AMS, Providence,

5th ed., 1969.

[145] E. Waring, Problems concerning interpolations, Philos. Trans. R. Soc. Lond., 69 (1779),

pp. 59–67.

[146] M. Webb, L. N. Trefethen, and P. Gonnet, Stability of barycentric interpolation for-

mulas for extrapolation, SIAM J. Sci. Comput., 34 (2012), pp. A3009–A3015.

[147] K. Weierstrass, Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen

einer reellen Veränderlichen, Sitzungsberichte der Akademie zu Berlin, (1885), pp. 633–639

and 789–805.

[148] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins., Math. Ann., 77 (1916), pp. 313–

352.

142

[149] E. T. Whittaker, On the functions which are represented by the expansions of the

interpolation-theory, Proc. Roy. Soc. Edinburgh, 35 (1915), pp. 181–194.

[150] G. B. Wright, M. Javed, H. Montanelli, and L. N. Trefethen, Extension of Chebfun

to periodic functions, SIAM J. Sci. Comput., 37 (2015), pp. C554–C573.

[151] K. Xu, The Chebyshev points of the first kind, Appl. Numer. Math., 102 (2016), pp. 17–30.

[152] K. Yao and J. B. Thomas, On some stability and interpolatory properties of nonuniform

sampling expansions, IEEE Trans. Circuit Theory, 14 (1967), pp. 404–408.

[153] N. Young, An Introduction to Hilbert Space, Cambridge University Press, Cambridge, UK,

1988.

[154] R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, San Diego,

CA, revised first ed., 2001.

[155] A. Zygmund, Trigonometric Series, Cambridge University Press, Cambridge, UK, 2nd ed.,

1959.

143

