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Abstract. Tomography can be used to reveal internal properties of a 3D object using any pene-
trating wave. Advanced tomographic imaging techniques, however, are vulnerable to both systematic
and random errors associated with the experimental conditions, which are often beyond the capabil-
ities of the state-of-the-art reconstruction techniques such as regularizations. Because they can lead
to reduced spatial resolution and even misinterpretation of the underlying sample structures, these
errors present a fundamental obstacle to full realization of the capabilities of next-generation phys-
ical imaging. In this work, we develop efficient and explicit recovery schemes of the most common
experimental error: movement of the center of rotation during the experiment. We formulate new
physical models to capture the experimental setup, and we devise new mathematical optimization
formulations for reliable inversion of complex samples. We demonstrate and validate the efficacy of
our approach on synthetic data under known perturbations of the center of rotation.
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1. Introduction. Tomographic imaging has had a revolutionary impact on med-
icine, physics, and chemistry. Even so, the problem of reconstructing an image from
tomographic data remains challenging in many interesting cases, such as when the
amount of available data is limited and/or the problem is ill posed (in the sense that
canonical metrics used to assess the discrepancy between a reconstruction and the
measured data generally possess many local minima). This ill posedness makes re-
constructions susceptible to experimental errors, in particular, to errors stemming
from mismatches between the experimental configuration and the assumptions of the
measurement process. Recovering such errors is crucial for realizing the gains from
improvements in measurement and experimental hardware, such as the improved res-
olution promised by brighter, more coherent next-generation light sources. Sample
drift [28] and beam drift [36] are two fundamental sources of error. These errors can
often arise from the drift of the center of rotation (CoR) of the imaging stage during
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Fig. 1. Consequences of failing to account for CoR shift during tomographic reconstruction. In
this experiment, the CoR was displaced by 2\% with respect to the size of the object domain, and the
standard reconstruction without CoR recovery (middle) looks very different from the original spher-
ical object (left). Our proposed reconstruction with CoR recovery (right) almost perfectly recovers
the object.

data acquisition [2], which is the focus of this work.
In computerized tomography, the object or sample being imaged is placed on a

stage and irradiated with parallel beams of x-rays. As the rays pass through the
object, they are partially absorbed according to the object's composition. Radiation
that passes through the object unabsorbed is collected by a detector, producing an
x-ray ``shadow"" or ``projection"" of the object. By rotating the object and repeating
the process, one obtains projections of the object as illuminated from several different
directions. One then uses these projections to reconstruct an image of the object and
its interior [22].

Imperfections in the experimental apparatus can cause the CoR of the imaging
stage to vary slightly over the course of this process. When this happens, the projec-
tions from different angles will not be properly aligned relative to one another, and
failing to account for this misalignment during reconstruction may result in a smeared
image (loss of resolution) or, worse, an image that is completely incorrect. Moreover,
even a small error in the CoR can yield a large error in the reconstruction, as is illus-
trated by the experiment of Figure 1. The image on the left shows the object---a small,
solid circle---and the image in the middle shows the result of a standard tomographic
reconstruction without addressing the CoR shift from a sequence of measurements in
which the CoR is perturbed by a 2\% displacement relative to the size of the object
domain. The reconstructed image obtained by not correcting for this perturbation
looks very different from the true object. We also demonstrate the reconstruction
of the approach we propose in this paper on the right side, which almost perfectly
resembles the true object.

In the past, it has largely been possible to ignore errors like these, as the drifts have
been small compared with the widths of the beams used to illuminate the object. With
demand for increasingly finer resolutions leading from higher-quality light sources with
narrower beams, however, these errors can no longer be ignored. Potential approaches
to this problem include the incorporation of prior knowledge into the reconstruction
process using Bayesian frameworks [17, 33, 34] and the use of regularizers to promote
sparsity or smoothness of the reconstruction [14, 10, 23, 30, 20]. One can also collect
additional data (beyond x-ray projections) that is less sensitive to experimental errors
and use this data to help with the reconstruction [7]. Unfortunately, the improvement
in tomographic hardware has been so great that these generic approaches, which
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apply more widely to problems other than CoR drift recovery, are not likely to be
sufficient. In the case of CoR drift, we show (in section 5) that standard regularization
approaches fail even when the regularization parameter value is chosen in an ideal way.

Much research effort has been devoted to tackling the CoR recovery problem.
For example, a typical approach to recovering a single, unknown CoR is to use a
pair of projections that are reflections of one another to estimate a detector offset
that can be used to shift the projections into the correct positions [40, 27]. This
approach is highly sensitive to the accuracy of the mirrored alignment, and its use of
such a small number of projections to perform the correction makes it susceptible to
noise and other effects of limited data, potentially resulting in a low-contrast recovery.
Moreover, mirrored pairs of projections are not always available in practice. Azevedo
et al. [2] proposed a method to estimate the CoR based on the preservation of photon
counts passing across the sample, which requires almost perfect measurement. The
most common technique is to compute cross-correlations between projections acquired
from successive rotations [11, 1, 18]; however, this approach is limited to simple and
relatively homogeneous samples, since there is no good way to rank one feature as
``more important"" than another when two projections contain very distinguishable
features. A similar approach involves manual alignment of the projections using a
known ``hotspot"" in the object as a reference. This process can be labor-intensive and
cannot be used if a hotspot cannot be identified. Recently, a new technique known as
iterative reprojection has been introduced in which one recovers projection alignments
and reconstructs the image simultaneously using an iterative procedure [35, 19, 39, 13].
The basic idea is to alternate between a few iterations of projection alignment and
a few iterations of reconstruction until a ``forward model"" of the experimental setup
and an ``inverse model"" of the reconstruction process are consistent with one another.
This approach can yield better accuracy, especially for noisy, limited data.

One deficiency of the iterative reprojection methods that have emerged thus far
is that the update of the projection alignment and the update of the reconstruction
are not fully coupled. As a result, some mismatch remains between the alignment
of the projections and the experimental configuration assumed by the reconstruction
process. In this work, we propose to address this problem using a novel joint inversion
framework based on optimization in which we explicitly model and recover for CoR
drift. Our proposed model is flexible, making no assumptions about when and where
the drift happens. Our new approach is easier to automate than existing approaches
and can be more robust in the context of poor data quality and limited prior knowledge
of the object being imaged.

In section 2, we describe our mathematical forward models of the CoR drift er-
ror in the experiment and show how to embed these models into the reconstruction
scheme. In section 3, we describe our simultaneous reconstruction approach for recov-
ering the object and the experimental error, including the formulation of the objective
function. In section 4, we describe the algorithm for solving the resulting optimiza-
tion problem and its complexity. In section 5, we present some numerical illustrations
comparing the performance of our simultaneous inversion method with that of ex-
isting approaches using a few synthetic examples. In section 6, we summarize the
proposed method and discuss a few directions for future research.

For simplicity, we confine ourselves to reconstructing 2D images, although our
methods work just as well in 3D.

2. Mathematical model. In this section, we describe our model for the tomo-
graphic imaging process. For further details on tomography, we refer the reader to
[21].
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Fig. 2. Geometric sketch of the Radon transform, which maps f from (x, y) space to (\theta , \tau )
space. The purple line and the green line denote rotations of their previous position, as the y-axis,
with respect to different CoRs, respectively.

2.1. Radon transform. The fundamental mathematical tool in tomography is
the Radon transform [32], defined for a compactly supported function f : \BbbR 2 \mapsto \rightarrow \BbbR by

(2.1) Rf(\tau , \theta ) =

\int \infty 

 - \infty 

\int \infty 

 - \infty 
f(x, y)\delta (\tau  - x cos \theta  - y sin \theta ) dx dy,

where \delta is the Dirac delta function. Throughout this article, we consider the restricted
domain given by \tau \in [0,\infty ) and \theta \in [0, 2\pi ), and we assume, as will always be the case
in practice, that f is well enough behaved that the integral makes sense. The Radon
transform of a function is frequently called its sinogram.

The projections that are measured in the tomographic x-ray imaging process
are values of the Radon transform of the object's attenuation coefficient f(x, y), a
function that describes the propensity of the object to absorb x-rays at each point
in the object's support. The angle \theta encodes the direction from which the beams
approach the object, and given that direction, \tau encodes the position of the beam. If
the CoR shifts from the origin to (x\ast 

\theta , y
\ast 
\theta ) \in \BbbR 2, as the imaging stage rotates through

the angle \theta , the projections we measure come not from (2.1) but from the CoR-shifted
Radon transform

(2.2) Rf(\tau , \theta , x\ast 
\theta , y

\ast 
\theta ) =

\int \infty 

 - \infty 

\int \infty 

 - \infty 
f(x, y)\delta 

\bigl( 
\tau  - x\ast 

\theta  - (x - x\ast 
\theta ) cos \theta  - (y - y\ast \theta ) sin \theta 

\bigr) 
dxdy.

For a derivation of this equation, see Appendix B. As shown in Figure 2, Rf(\tau , \theta , 0, 0)
is the integral of f along the purple line perpendicular to the direction determined
by the angle \theta and at a distance \tau from the origin. Alternatively, the purple line
is obtained by rotating from its previous position, which overlays with the y-axis, \theta 
degrees with respect to CoR (0, 0). However, if the CoR is shifted from (0, 0), denoted
by the purple dot, to the green dot, we obtain a different projection as Rf(\tau , \theta , x\ast 

\theta , y
\ast 
\theta ).

To recover for the difference in the CoR, we need a way to convert (2.2) back into
(2.1). This is easy: we have

(2.3) Rf(\tau , \theta , 0, 0) = Rf(\tau  - P\theta , \theta , x
\ast 
\theta , y

\ast 
\theta ),
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where

(2.4) P\theta = x\ast 
\theta (1 - cos \theta ) + y\ast \theta sin \theta .

The simple relationship (2.3)--(2.4) forms the basis for our algorithm. We rotate the
imaging stage through an angle \theta with the intent of measuring Rf(\tau , \theta , 0, 0), but we
instead measure Rf(\tau , \theta , x\ast 

\theta , y
\ast 
\theta ) due to drift of the CoR. The identity (2.3) shows

that all we need to do is translate (in \tau ) the Radon transform that we measured by
an amount P\theta , which is related to the true CoR by (2.4). As we later show, given
sufficient data, we can estimate the drift-induced P\theta using an optimization procedure.

2.2. Discrete tomography. In practice, we cannot recover the desired object
property (e.g., attenuation coefficient) at all points in space. Instead, we discretize the
space (containing the compact object) being imaged into N \times N pixels and vectorize
it to an array \scrV . Let \scrW v be the value of the object property we intend to recover on
the pixel v \in \scrV , and let \scrW \scrW \scrW = \{ \scrW v : v \in \scrV \} denote the discretized image. Given
parameters \tau and \theta , we calculate a discrete Radon transform of\scrW \scrW \scrW via

R\tau ,\theta (\scrW \scrW \scrW ) =
\sum 
v\in \scrV 

L\tau ,\theta 
v \scrW v,

where L\tau ,\theta 
v is the length of the intersection of the beam described by \tau and \theta with the

pixel v; see Figure 2. It is this relationship that we must invert to reconstruct our
image: knowing R\tau ,\theta (\scrW \scrW \scrW ), we wish to find \scrW v for each pixel v.

In addition to needing to consider the image discretely, we must also ``discretize
the beams"": we have access only to R\tau ,\theta for a limited number of values of \tau and
\theta . The values of \tau we use are fixed and equally spaced and are identical for each \theta .
We denote the collection of values of \tau (sometimes called ``beamlets"") by \scrT and the
collection of values of \theta by \Theta ; accordingly, N\tau = | \scrT | is the number of beamlets, and
N\theta = | \Theta | is the number of angles. In reality, the resolution of \scrT is decided by the
energy level of the radiation source and by the detector resolution [3].

Thus, for each angle \theta \in \Theta , our measurement apparatus ideally produces a set of
samples of Rf(\tau , \theta ), equally spaced in \tau , which we take as values of R\tau ,\theta (\scrW \scrW \scrW ). Because
of the drift in the CoR, however, our samples are actually from Rf(\tau , \theta , x\ast 

\theta , y
\ast 
\theta ) instead.

We can account for this drift by recomputing the L\tau ,\theta 
v to be consistent with the change

in CoR, but we wish to avoid doing so because calculating these values (potentially
many times) is expensive. Instead, we calculate them once, assuming that the CoR
is at the origin, and recover for the change in CoR by translating the projections.

2.3. Aligning the projections. In principle, translating Rf(\tau , \theta , x\ast 
\theta , y

\ast 
\theta ) in the

\tau variable by P\theta is an easy task---the answer is just Rf(\tau  - P\theta , \theta , x
\ast 
\theta , y

\ast 
\theta )---but since we

have access only to samples of Rf(\tau , \theta , x\ast 
\theta , y

\ast 
\theta ) at \tau \in \scrT , we cannot do this. Since the

samples come from equally spaced points, a natural idea is to effect the translation by
using the discrete Fourier transform, which is mathematically equivalent to forming a
trigonometric interpolant to Rf(\tau , \theta , x\ast 

\theta , y
\ast 
\theta ) through the points \tau \in \scrT and translating

the interpolant. This approach works, but the images recovered in this way in practice
are contaminated with ringing artifacts [4, p. 209]. To fix this problem, we apply a
low-pass filter---a normalized Gaussian filter with standard deviation \sigma ---to damp the
high-order Fourier coefficients.

An alternative way to understand the translation process is as follows. Translating
Rf(\tau , \theta , x\ast 

\theta , y
\ast 
\theta ), viewed as a function of \tau only, by P\theta is equivalent to convolving Rf
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with a Dirac delta function centered at P\theta : Rf(\tau  - P\theta ) = (Rf \ast \delta P\theta 
)(x), where

\delta P\theta 
(\tau ) = \delta (\tau  - P\theta ). We regularize \delta P\theta 

by replacing it with a Gaussian,

(2.5) \delta P\theta ,\sigma (\tau ) =
1

\sigma 
\surd 
2\pi 

e - 
(\tau  - P\theta )2

2\sigma 2 ,

and instead compute the convolution (Rf \ast \delta P\theta ,\sigma )(\tau ), which we do by sampling Rf
and \delta P\theta ,\sigma on the same equally spaced grid and using the discrete Fourier transform.

How should one choose the hyperparameter \sigma > 0? Let \widetilde Rf(\tau , \theta , 0, 0) be our
approximation to (Rf \ast \delta P\theta ,\sigma )(\tau )

1 obtained from the discrete Fourier transform. By
the error analysis presented in Appendix C, if the (attenuation coefficient of the)
object being imaged is twice continuously differentiable, then

(2.6) \widetilde Rf(\tau , \theta , 0, 0) = Rf(\tau , \theta , 0, 0) +O(\sigma 2) +O

\biggl( 
1

\sigma N\tau 

\biggr) 
.

The second term on the right-hand side of (2.6) represents the error incurred in our
Gaussian regularization of the delta function, while the third term represents the
discretization error due to the limited number of measurements. A trade-off between
the two exists: a narrower Gaussian (smaller \sigma ) implies a more faithful translation,
but it requires more measurements (greater N\tau ) to approximate accurately.

We choose to have the full width at half maximum (FWHM) of the Gaussian
regularizer to cover one unit of beamlet width. Since the FWHM for a Gaussian
with variance \sigma 2 is given by FWHM \approx 2.355\sigma , this means that we choose \sigma =
1/2.355 \approx 0.42. Observe that this choice is supported by Figure 3, which displays
the approximation error in (2.6) in the simulated beam data from Figure 4. For the
values of N\tau considered, the choice FWHM = 1 is roughly the point at which the
second error term in (2.6) takes over from the first.

2.4. Numerical illustration. To illustrate the effects of the approximation
(2.6) in the context of a complete image, we perform a simulation using a standard
MRI test image. We simulate beam data from a variety of angles, assuming that
as the object rotates, it does so about a CoR (x\ast 

\theta i
, y\ast \theta i) = (x\ast 

\theta j
, y\ast \theta j ) \not = (0, 0) where

\theta i \in 1, . . . , N\theta and \theta j \in 1, . . . , N\theta represent two different angles; in other words, there
is only one CoR drift in the beginning of the experiment. The results are displayed
in Figure 4a, where N = 128, N\tau = \lfloor 

\surd 
2N\rfloor , and N\theta = 30 equally spaced in [0, 2\pi ).

The leftmost panel shows the test image; the red dot marks the CoR (x\ast 
\theta , y

\ast 
\theta ). The

second panel shows the sinogram obtained from this data. The third panel shows the
sinogram that we would have obtained in the absence of the drift in CoR. The fourth
panel shows the sinogram that we obtain after performing the recovering translations
using the approach outlined in the preceding subsection. The drift-free and drift-
recovered sinograms are in excellent agreement, even in the presence of the errors
described by (2.6).

In Figure 4b, we repeat the experiment of Figure 4a except that the CoR changes
each time the object is rotated instead of just once at the beginning of the exper-
iment; in other words, (x\ast 

\theta i
, y\ast \theta i) \not = (x\ast 

\theta j
, y\ast \theta j ) \not = (0, 0). The trail of red dots in the

leftmost panel shows how the CoR drifts across the image as the data is acquired.
The drift-free and drift-recovered sinograms are again in excellent agreement. From a

1As in the preceding paragraph, the Rf in Rf \ast \delta P\theta ,\sigma in this definition is understood to be the

CoR-shifted Radon transform. Our notation \widetilde Rf(\tau , \theta , 0, 0) emphasizes our hope that \widetilde Rf(\tau , \theta , 0, 0) \approx 
Rf(\tau , \theta , 0, 0).
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Fig. 3. Approximation error incurred in the computation of the translation Rf(\tau  - P\theta ) when
replacing the Dirac delta by the Gaussian (2.5) and carrying out the translation via the discrete
Fourier transform. The error is shown as a function of the Gaussian parameter \sigma and of N\tau , the
number of beamlets of data available.

practical perspective, the additional ``jitter"" due to the multiple shifts of CoR---readily
apparent in the measured sinogram---complicates the alignment process significantly.
Nevertheless, the algorithm we propose next is able to handle multiple shifts.

3. Optimization-based reconstruction algorithm. In the experiments of
section 2.4, we assumed exact knowledge of the CoR (x\ast 

\theta , y
\ast 
\theta ) and the corresponding

translation parameter P\theta . In practice, we must estimate these parameters from the
data. As described in section 1, the best techniques used to date generally do this
iteratively by alternating between using the current parameters P\theta to reconstruct the
image and using the reconstruction to update the parameters. Instead, we propose
to estimate the parameters and reconstruct the image concurrently.

The most straightforward approach would be to try to estimate x\ast 
\theta and y\ast \theta and

obtain P\theta from these estimates using (2.4); we refer to this as the explicit approach,
since we try to find the CoR explicitly. Alternatively, we can skip the estimation of x\ast 

\theta 

and y\ast \theta and try to solve for P\theta directly; we call this the implicit approach. One major
difference between the explicit and implicit approaches is the different dimension of
unknown variables. In general, each P\theta corresponds to a pair of (x\ast 

\theta , y
\ast 
\theta ), which results

in N\theta number of CoRs to be recovered. If one knows which angles have the CoR drifts,
however, the number of (x\ast 

\theta , y
\ast 
\theta ) pairs can be reduced to the exact number of drifts.

To exploit the correlations between (x\ast 
\theta , y

\ast 
\theta ) and\scrW \scrW \scrW , we formulate the reconstruc-

tion problem as simultaneously recovering the CoR and recovering the object. There-
fore, the final explicit reconstruction problem is

(3.1) min
\scrW \scrW \scrW \geq 0,\bfx \ast ,\bfy \ast 

\phi (\scrW \scrW \scrW ,x\ast ,y\ast ) =
1

2
| | L\scrW \scrW \scrW  - vec (g(D,x\ast ,y\ast ))| | 22 ,

where x\ast = [x\ast 
\theta ]

N\theta 

\theta =1, y
\ast = [y\ast \theta ]

N\theta 

\theta =1, \scrW \scrW \scrW \geq 0 is due to the physical nature of mass, D \in 
RN\theta \times N\tau is the measurement data, g(D,x\ast ,y\ast ) = [D\theta ,\tau \ast \delta P\theta (x\ast 

\theta ,y
\ast 
\theta ),\sigma 

]\theta ,\tau \in \BbbR N\theta \times N\tau is
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Fig. 4. Simulated numerical illustration of recovering the sinogram using the procedure of
section 2.3. (a) Recovering a single CoR shift, made once at the beginning of the experiment. (b)
Recovering multiple CoR shifts, one at each angle of rotation. The red dots in the ``ground truth""
images show the path of the CoR as it drifts during the data acquisition process. (Color available
online.)

the translated sinogram by (2.4), and L = [L\tau ,\theta 
v ] \in \BbbR N\theta N\tau \times N2

is determined based on
the standard 2D Radon mapping with an implied CoR of (0, 0).

As a side note, tomographic reconstruction without CoR error recovery is typically
formulated as

(3.2) min
\scrW \scrW \scrW \geq 0

1

2
| | L\scrW \scrW \scrW  - vec (D)| | 22 ,

which is equivalent to (3.1) for (x\ast ,y\ast ) = 0.
The first-order derivative of the objective function (3.1) is

(3.3)

\nabla \phi (\scrW \scrW \scrW ,x\ast ,y\ast ) =

\left[  \nabla \scrW \scrW \scrW \phi (\scrW \scrW \scrW ,x\ast ,y\ast )
\nabla \bfx \ast \phi (\scrW \scrW \scrW ,x\ast ,y\ast )
\nabla \bfy \ast \phi (\scrW \scrW \scrW ,x\ast ,y\ast )

\right]  
=

\left[  LT

(\nabla \bfx \ast g(D,x\ast ,y\ast ))T

(\nabla \bfy \ast g(D,x\ast ,y\ast ))T

\right]  (L\scrW \scrW \scrW  - g(D,x\ast ,y\ast )) .

In (3.3), \nabla \bfx \ast g(D,x\ast ,y\ast ) and \nabla \bfy \ast g(D,x\ast ,y\ast ) are

vec

\Biggl( \biggl[ 
D\theta ,: \ast 

\biggl( 
1

\sigma 
\surd 
2\pi 

exp

\biggl( 
 - (\scrT  - P\theta )

2

2\sigma 2

\biggr) \biggr) 
\circ \scrT  - P\theta 

\sigma 2
(cos \theta  - 1)

\biggr] 
\theta =1,...,N\theta 

\Biggr) 
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and

vec

\Biggl( \biggl[ 
D\theta ,: \ast 

\biggl( 
1

\sigma 
\surd 
2\pi 

exp

\biggl( 
 - (\scrT  - P\theta )

2

2\sigma 2

\biggr) \biggr) 
\circ \scrT  - P\theta 

\sigma 2
sin \theta 

\biggr] 
\theta =1,...,N\theta 

\Biggr) 
,

respectively, where \circ is the Hadamard product and D\theta ,: is the \theta th row of D. A major
difference compared with the single CoR shift case is the increased computational cost.
Instead of having only two extra parameters, this case has 2N\theta extra parameters.

Until now, we have been focusing on explicitly recovering the coordinates of the
CoRs (x\ast 

\theta , y
\ast 
\theta ). Alternatively, we can reformulate the optimization problem as finding

the optimal shifts P\theta for each angle, which results in the implicit problem

(3.4) min
\scrW \scrW \scrW \geq 0,\bfP 

\phi (\scrW \scrW \scrW ,P) =
1

2
| | L\scrW \scrW \scrW  - g(D,P)| | 22 ,

where P = [P\theta ]\theta =1,...,N\theta 
and g(D,P) = [D\theta ,\tau \ast \delta P\theta ,\sigma ]\theta ,\tau \in \BbbR N\theta \times N\tau . The derivative of

the objective function in (3.4) is similar to that in (3.3) but simpler, so we will not
describe it here. In the case of multiple CoR shifts, the advantage of this formula-
tion is the reduced number of extra parameters by a factor of 2. Notice that given a
fixed CoR, the Radon transform has the property that different transformations (e.g.,
translation or rotation) of an object will result in different sinograms; see Appendix A.
These properties suggest that any pair of transformed object and its corresponding
sinogram is an optimal solution of the reconstruction. Therefore, the proposed op-
timization problem, either explicit or implicit, will not have a unique solution. In
other words, if two objects are related by affine transformation (up to translations
and rotations), then the two objects, together with their corresponding sinograms,
are equivalent from the perspective of the optimization problems in (3.1) and (3.4).

4. Optimization complexity and computational expense. Since the com-
plexity of (2.4) is negligible, we analyze only the computational complexity of the
implicit approach (3.4). The calculation of (3.4) requires about N2N\theta flops given the
relationship N\tau = \lfloor 

\surd 
2N\rfloor , and it includes one misfit calculation and three fast Fourier

transforms required in operator g. Figure 5 shows a log-log plot of the computational
time of one (function, gradient) evaluation for increased number of N , given N\theta = 1.
With a model fit to the time result, the time complexity is on the order of N2, which
is consistent with our analytical approximation considering N\theta \ll N in general.

The optimization solver that we use in the numerical experiments is an inexact
truncated-Newton (TN) method [29] with a projected preconditioned conjugate gra-
dient (PPCG) [31, p. 460] subproblem solver to compute the search direction. The
result, summarized in Algorithm 4.1, is a large-scale optimization solver with memory
efficiency well suited for the high computational complexity required by the resulting
nonlinear, nonconvex optimization problem.

In our implementation, we do not form the Hessian \nabla 2\phi ; instead, we approximate
the Hessian vector product (\nabla 2\phi )T d required in PPCG by taking finite differences
with \nabla \phi values. An estimation of the complexity of TN is provided as follows. Each
outer iteration needs the following computations with respect to the number of un-
known parameters:

\bullet one infinity-norm calculation, one vector addition, and two (function, gradi-
ent) evaluations,

\bullet a number of PPCG iterations, with cost per inner iteration given by
-- one (function, gradient) evaluation,
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Fig. 5. Time elapsed for one (function, gradient) evaluation for different measurement resolu-
tion numbers N .

Algorithm 4.1 Truncated Newton algorithm for the implicit problem (3.4).

1: Input (\scrW \scrW \scrW (0),P(0)) and tolerance \epsilon > 0; set k = 0.
2: repeat
3: Obtain search direction d(k) \leftarrow PPCG((\scrW \scrW \scrW (k),P(k)),\nabla 2\phi ,\nabla \phi ,0). If no descent

direction is obtained, switch to steepest descent.
4: Obtain \alpha (k) \leftarrow Projected Line Search(d(k), (\scrW \scrW \scrW (k),P(k)), \phi ,\nabla \phi ,0); see [26].
5: Update (\scrW \scrW \scrW (k+1),P(k+1))\leftarrow (\scrW \scrW \scrW (k),P(k)) + \alpha (k)d(k).
6: until The stopping criterion | | \nabla \phi (\scrW \scrW \scrW (k),P(k))| | \leq \epsilon is satisfied.

-- four inner products, and
-- five ``vector+constant\cdot vector"" operations.

In our experience, on average, five PPCG iterations are required per outer TN
iteration. The overall cost of one TN iteration for solving (3.4) amounts to (1 + 5 +
20+ 25+ 1)(| \scrV | +N\theta ) = 52(| \scrV | +N\theta ) floating-point operations, plus seven (function,
gradient) evaluations, whose complexity is O(N2).

5. Numerical results. In this section, we examine the performance of the al-
gorithm for both the explicit and implicit cases. The primary goal of our tests is to
measure how well we recover the CoR shift with respect to different initializations,
different objects, and different levels of noise in the data. All numerical experiments
are performed on a platform with 32 GB of RAM and two Intel E5430 Xeon CPUs.
Throughout all the numerical tests, we fix the experimental setup for all the tests as
N = 128, N\tau = \lfloor 

\surd 
2N\rfloor , and N\theta = 30; that is, the object size is 128\times 128 pixels, and

the tomographic data is measured by collecting 30 projections over a full rotation of
2\pi radians. We also choose the stopping criterion of TN to be | | \nabla \phi | | < 10 - 5.

As indicated in section 3, our proposed optimization problem does not have a
unique solution in the sense that the reconstructed object can be a translated or
rotated version of the ground truth. Therefore, the error metric we use to measure
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the reconstruction quality cannot be simply the mean squared error. To resemble the
human visual system, we utilize the structural similarity (SSIM) metric from [37] to
quantify the reconstruction quality. Given two images a and b of the same dimension,
the SSIM index is a measure of the similarity between a and b and is defined by

SSIM(a, b) =
(2\mu a\mu b + c1)(2\sigma ab + c2)

(\mu 2
a + \mu 2

b + c1)(\sigma 2
a + \sigma 2

b + c2)
,

where c1 and c2 are small, positive constants; \mu a and \sigma 2
a are the mean and variance,

respectively, of a; \mu b and \sigma 2
b are the mean and variance, respectively, of b; and \sigma ab is

the covariance of a and b. Notice that for nonnegative a and b, SSIM(a, b) \geq 0. The
closer the value of SSIM(a, b) is to 1, the greater is the similarity between a and b.

We emphasize that in this work our focus is on the development of a joint frame-
work to account for general CoR shifts. To isolate the contributions of our proposed
approach to the reconstruction performance, we do not consider any additional reg-
ularization technique in this work. Additionally, the nonnegative constraint on \scrW \scrW \scrW 
serves as a soft regularizer, which means we do not need to add a regularizer and
can instead show the benefit of our approach by itself [8, 5]. As suggested by Fig-
ure 6, where we test the performance of TN on various settings for the traditional
tomography problem (3.2), we observe that as long as the dimension of Null(L) is
close to the number of zeros of the object, the reconstruction quality is stable and
satisfactory based on SSIM and the objective value of problem (3.2). Since the object
domain always has a zero support to account for the field of view during the rotation,
the dimension of Null(L) typically is proportional to the number of zeros in\scrW \scrW \scrW \ast , and
this explains the satisfactory reconstruction result from a seemingly underdetermined
system.
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Fig. 6. Performance of TN for solving problem (3.2) for various underdetermined and overde-
termined systems.

5.1. Analysis of initialization. In this section, we test the sensitivity of the
proposed algorithm to the initialization of\scrW \scrW \scrW .

We first consider the case of a single CoR shift that happens at the beginning
of the experiment on a standard Shepp--Logan phantom object. The CoR is denoted
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Fig. 7. (First) Shepp--Logan phantom object with true CoR denoted by the red dot (color avail-
able online). (Upper left) Without error recovery, the direct reconstruction result is far away from
the ground truth. (Upper middle) Result of direct reconstruction with L2-regularization. The regular-
ization parameters \lambda for L2- and TV -regularizers are chosen to be the maximizers of SSIM. (Upper
right) Result of direct reconstruction with TV-regularization. (Lower left) Result of reconstruction
by ``mirror alignment."" (Lower middle) Reconstruction with explicit CoR recovery. (Lower right)
Result of reconstruction using the true CoR.

by the red dot on top of the ground truth in Figure 7 (far left). The upper left
panel of Figure 7 shows the standard reconstruction without considering the shift
of the CoR, and we observe that it is far from the ground truth. We also include
reconstructions obtained by adding standard regularizers. In particular, we consider
L2- and TV -regularizers [25, 15] on the variable\scrW \scrW \scrW , respectively given by

(5.1) min
\scrW \scrW \scrW \geq 0

1

2
| | L\scrW \scrW \scrW  - vec (D)| | 22 + \lambda | | \scrL \scrW \scrW \scrW | | 22

and

(5.2) min
\scrW \scrW \scrW \geq 0

1

2
| | L\scrW \scrW \scrW  - vec (D)| | 22 + \lambda | | \nabla \scrW \scrW \scrW | | 1 ,

where \scrL \in \BbbR N2\times N2

is the Laplacian operator, \nabla denotes the spatial gradient, and
\lambda > 0 is the regularizer parameter that balances the misfit term and regularization
term. One approach to choosing \lambda would be the L-curve method [16]. Instead, how-
ever, we choose \lambda \in [10 - 10, 102] to be the value that gives the best reconstruction as
measured by the SSIM index (see Figure 8). This is an idealistic choice of \lambda that is
impractical. The results given in the upper middle and upper right panels demon-
strate this assertion and show that standard regularization techniques are not able to
improve the reconstruction quality in the presence of even a single CoR shift. Since
even an optimal \lambda performs poorly for CoR recovery, for the rest of our experiments
we do not report results from regularization techniques.

We also compare our reconstruction result with the most popular approach for the
case of a single CoR drift [27]. The basic idea is to utilize the fact that when the CoR
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Fig. 8. (Left) SSIM for TV-regularized reconstruction with different \lambda . (Right) SSIM for
L2-regularized reconstruction with different \lambda .

is the origin, the projection at angle 0\circ should be a reflection of the projection at angle
180\circ . Therefore, the CoR shift can be estimated by aligning these two projections. In
our case, as is often the case in practice, exactly reflecting directions are not available;
instead, we choose the pair of angles 1\circ and 175\circ from the available 30 projections. We
align these two projections by cross-correlation [40] and use the estimated CoR shift
to translate the collected sinogram. The reconstruction from the shifted sinogram is
reported in the lower left panel. We also report the reconstruction using the true CoR
in the lower right panel. The lower middle panel shows the reconstruction obtained
by the proposed explicit approach, which clearly best resembles the ground truth.

The next test is to optimize the explicit problem (3.1) and the implicit prob-
lem (3.4) in order to recover (x\ast 

\theta , y
\ast 
\theta ) and P, respectively. Given an initial (x\ast 

\theta , y
\ast 
\theta )

as the center, left top corner (NW), left bottom corner (SW), right top corner (NE),
and right bottom corner (SE) of the object domain, respectively, and initialization
\scrW \scrW \scrW \ast = 0, the performance is shown in Figure 9. In this test, the explicit approach
consistently recovers objects that are better compared with the implicit approach,
which struggles for certain initializations. This observation is also reflected in the ob-
jective value and the reconstruction quality. In addition, the explicit approach takes
fewer iterations to converge to smaller objective values compared with the implicit
approach. The explicit approach also provides relatively better reconstruction quality
as measured by the SSIM index.

In Figure 10, we also show the iterative progress of the optimization problems
(3.2), (3.1), and (3.4), respectively, for the single CoR shift case. The left graph shows
the progress of the objective value for the three approaches. Standard tomographic
reconstruction, which refers to reconstruction without error recovery, converges much
more slowly than the other two with a much higher objective value, while the explicit
approach reduces the objective value even further than the implicit approach because
of the reduced number of variables. The right graph compares the progress of the SSIM
index for the three approaches, which is somewhat consistent with the function value
reduction. We observe that the explicit approach provides the best reconstruction
quality in terms of SSIM compared with the other two approaches, while the standard
approach performs the worst because it does not attempt to recover for the error in
CoR.

The next test concerns solving the reconstruction problem with multiple CoR



B510 A. P. AUSTIN, Z. DI, S. LEYFFER, AND S. M. WILD

NW

e
x

p
li

c
it

re
c

o
n

.

NE Center SW SE

im
p

li
c

it

re
c

o
n

.

1 2 3 4 5
10 -4

10 -2

70

173

89

129

109

345

94

243

76

264

explicit

implicit

1 2 3 4 5

0.4

0.5

0.6

S
S

IM

Fig. 9. Performance of the explicit and implicit approaches for recovering a single CoR shift.
Columns correspond to different initializations for CoR (x\ast 

\theta , y
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\theta ). The top row shows the correspond-

ing reconstructions from the explicit approach; the second row shows the corresponding reconstruc-
tions from the implicit approach; the third row shows the corresponding objective function values
from the explicit and implicit approaches, respectively, where the number labeled on each case is the
total number of iterations needed for convergence; the fourth row shows the reconstruction qualities
measured by SSIM index for the explicit and implicit approaches, respectively.
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Fig. 10. Iterative performance of three approaches---standard tomographic reconstruction, ex-
plicit reconstruction, and implicit reconstruction---for the single CoR shift case. Left: Progress of
reducing objective value \phi . Right: Progress of improving SSIM.
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Fig. 11. (Left) Shepp--Logan phantom object with true CoRs connected by red dots (color
available online). (Middle) Without error recovery, a direct reconstruction result is far away from
the ground truth. (Right) Reconstruction result with error recovery, which is very close to ground
truth.
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Fig. 12. For the multiple CoR shifts case, the reconstruction qualities provided by the explicit
and implicit approaches are comparable, but the implicit approach converges faster.

shifts in the sense that every rotation has its own CoR. This problem setting is
illustrated in Figure 11, where the ground truth is again the Shepp--Logan phantom
and the trajectory of the dynamic CoR is denoted by connected red dots. The second
panel shows the reconstruction without CoR recovery, and the third panel shows the
reconstruction with error recovery. Again, we tested the performance of the explicit
and the implicit algorithm; the results are shown in Figure 12. This time we observe
that the reconstruction quality of the implicit approach is comparable to the explicit
approach but is more sensitive to the initialization. In the multiple CoR shifts case,
however, the convergence of the implicit approach is faster because of its reduced
number of variables compared with the explicit approach. Again, the performance
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Fig. 13. (Left) Multiple CoR shifts introduce jitters in the measurement data. (Middle) The
explicit approach provides a cleaner and jitter-free sinogram. (Right) The implicit approach is also
able to recover a clean and jitter-free sinogram.

difference between the explicit and implicit approaches is reflected in the objective
value and the corresponding SSIM index. More importantly, as shown in Figure 13,
both approaches are able to remove the jitters introduced by multiple CoR shifts and
return a clean sinogram. The consistency between the objective value \phi and SSIM
index suggests that, in the case of limited knowledge about the object, the objective
value can be reliable in judging the reconstruction quality of different local minima.

We note that as long as the shift parameters P are initialized to zero, the perfor-
mance is relatively stable and less susceptible to the initialization of the object. The
reason is that choosing the initial shift parameters as zeros is equivalent to providing
the initialization of the object as the reconstruction without error recovery, which is
closer to the true solution than the reconstruction from a randomly perturbed sino-
gram. Therefore, choosing zeros for the initial shifting parameters performs better,
and this initialization will be our choice for the rest of the tests.

Similarly to the single CoR case, we compare the iterative progress provided
by the standard reconstruction, the explicit approach, and the implicit approach for
the multiple CoR shifts case; the results are shown in Figure 14. As expected, the
standard approach converges rapidly to a local minimum that has a high objective
value. More importantly, the implicit approach provides a better objective value than
does the explicit approach. The reconstruction quality (right panel of Figure 14)
shows comparable performance between the explicit and implicit approaches.

5.2. Noisy data. In practice, the experimental data is known to be corrupted
by noise. In this section, we test the performance of our proposed approach for
contaminated data with respect to different levels of (mean zero) Gaussian noise. We
start the test for the single CoR shift case as shown in Figure 15, where the ground
truth in this case is the standard MRI image. Similarly, the second and third panels
show the reconstructions without and with error recovery, respectively.

In this case, we compare the performance of the explicit and implicit approaches
with the state-of-the-art alignment approach [13] provided by TomoPy 1.1.3 [12], a
widely used tomographic data processing and image reconstruction library. The algo-
rithm proposed in [13] is an iterative method that alternates between the alignment
of the sinogram and the reconstruction of the object. The alignment step minimizes
the misfit between the current sinogram and the newly simulated sinogram based on
the current reconstruction. In Figure 16, we illustrate the reconstruction results re-
turned by the three methods as we increase the noise level in the experimental data;
the columns represent an increase in the noise level from 4\% to 22\%. We observe
that the explicit and implicit approaches are comparable to each other. However, the
SSIM index for both approaches suggests that the implicit approach provides better
reconstruction quality. This observation can be explained by the fact that although
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Fig. 14. Iterative performance of three approaches---standard tomographic reconstruction, ex-
plicit reconstruction, and implicit reconstruction---for the multiple CoR shifts case. Left: Progress
of reducing objective value \phi . Right: Progress of improving SSIM.
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Fig. 15. (Left) Object as the standard MRI image with only one CoR shift denoted by the red
dot (color available online). (Middle) Reconstruction from noise-free data without error recovery.
(Right) Reconstruction with error recovery.

the explicit approach can provide a higher contrast image, its ability to remove noise
outside of the sample region is not as good as that of the implicit approach. Overall,
the performance of our proposed approaches exceeds that of the alternating algorithm
[13] provided by TomoPy.

The last study is to test the performance of our proposed approach for recovering
the multiple CoR shifts, as illustrated in Figure 17. As measured by SSIM, the implicit
approach clearly outperforms the other two approaches, while the reconstructions of
the alternating alignment do not approach the ground truth at all. In Figure 18, we
illustrate the reconstruction results returned by the three methods respectively as we
increase the noise level in the same way as in the single CoR shift case illustrated
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Fig. 16. Performance comparison between proposed approach and state-of-the-art approach
provided by TomoPy library for single CoR shifts when the noise level of experimental data is
increasing.
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Fig. 17. (Left) Second test case given the MRI imaging object, with multiple CoR shifts with
its trajectory connected by red dots (color available online). (Middle) Reconstruction from noise-free
data without error recovery. (Right) Reconstruction of noisy data with error recovery.

earlier. Again, the explicit and implicit approaches are able to provide a reasonable
reconstruction, and the implicit approach in this case is able to provide a better recon-
struction for the noisier case. Similarly to the single CoR shift case, the performance
of our proposed approaches exceeds that of the alternating algorithm dramatically.
Therefore, in the case of limited knowledge of the CoR shifts with noisy measurement
data, the implicit approach works the best.

6. Conclusions. In this work, we propose a simultaneous inversion framework to
address a common yet challenging experimental error in tomographic reconstruction,
namely, a shift of the center of rotation (CoR). We also derive an analytical model
to describe the general CoR shifts and how the sinograms with and without such
shifts relate to each other. We derive an analytical model for the reconstruction
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Fig. 18. Performance comparison between proposed approach and state-of-the-art approach
provided by TomoPy library for multiple CoR shifts when the noise level of experimental data is
increasing.

framework to recover the CoR shifts together with the reconstruction of the object.
The resulting optimization framework can be tuned to explicitly or implicitly reveal
the true CoR locations. It is solved by a derivative-based optimization solver such as
a TN algorithm.

Our numerical results show that when limited and noisy experimental data is
available, significant improvements of the reconstruction quality can be achieved by
performing the proposed simultaneous inversion. We compare our new approach with
a state-of-the-art error reconstruction technique implemented in TomoPy and stan-
dard reconstruction techniques with a regularizer approach. For both comparisons,
we observe superior results obtained by our approach. Given prior knowledge of how
CoR shifts happen, explicit and implicit approaches can be chosen to maximize the
performance, based on their different computational complexities. In particular, the
implicit approach shows a stronger capability in more general scenarios such as noisy
data.

Discussion. The simultaneous inversion we propose in this work is flexible and
does not require extensive knowledge about the experimental system or the object.
Even for the single CoR shift, the proposed approach does not require that the sample
be completely contained in the field of view or that no nonlinear effects such as
diffraction or refraction occur. It can be naturally extended to partially address more
complicated experimental error such as per-scan drift. In parallel-beam tomography,
the trajectories of the penetrating x-rays result in tomographic projections that form
a stack of parallel 2D slices. Traditionally, 3D objects are recovered by reconstructing
each slice independently [38]. Therefore, the extension of the proposed approach to
a full 3D reconstruction is trivial in parallel-beam tomography. Alternatively, since
each 2D slice shares the same CoR, the proposed approach can also be extended to a
direct 3D reconstruction without adding an extra degree of freedom. One aspect we
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can further explore is to incorporate prior knowledge about the experimental system,
such as the continuous dynamic of the CoR movement, into the joint framework as
a regularizer on the error parameters. Overall, the challenge we are facing is the
increased computational complexity. One way to mitigate this difficulty is to consider
a parallel implementation that could be invoked inside a TN solver or at the level of
processing blocks of experimental data (e.g., per angle). A multigrid approach [24]
could also benefit the computational performance.

Appendix A. Properties of radon transform. We briefly describe a few
properties of the Radon transform that explain the equivalence of reconstruction via
translation and rotation.

Symmetry: Rf(\tau , \theta ) = Rf( - \tau , \theta + \pi ).
Translation: Let g(x - \Delta x, y  - \Delta y) = f(x, y). Then

Rf(\tau , \theta ) = Rg(\tau \prime , \theta ),

where \tau \prime = \tau  - \Delta x cos \theta  - \Delta y sin \theta .

Rf(\tau , \theta ) =

\int \infty 

 - \infty 

\int \infty 

 - \infty 
f(x, y)\delta (\tau  - x cos \theta  - y sin \theta )dxdy

=

\int \infty 

 - \infty 

\int \infty 

 - \infty 
g(x - \Delta x, y  - \Delta y)\delta (\tau  - x cos \theta  - y sin \theta )dxdy

=

\int \infty 

 - \infty 

\int \infty 

 - \infty 
g(x\prime , y\prime )\delta (\tau  - (x\prime +\Delta x) cos \theta  - (y\prime +\Delta y) sin \theta )dx\prime dy\prime 

=

\int \infty 

 - \infty 

\int \infty 

 - \infty 
g(x\prime , y\prime )\delta (\tau \prime  - x\prime cos \theta  - y\prime sin \theta )dx\prime dy\prime 

= Rg(\tau \prime , \theta ).

Rotation: Let g(r, \phi  - \Delta \phi ) = f(r, \phi ) where (r, \phi ) is the polar coordinates of
(x, y). Then

Rf(\tau , \theta ) = Rg(\tau , \theta  - \Delta \phi ).

Rf(\tau , \theta ) =

\int \infty 

 - \infty 

\int \infty 

 - \infty 
f(r, \phi )\delta (\tau  - r cos\phi cos \theta  - r sin\phi sin \theta )| r| drd\phi 

=

\int \infty 

 - \infty 

\int \infty 

 - \infty 
f(r, \phi )\delta (\tau  - r cos(\phi  - \theta ))| r| drd\phi 

=

\int \infty 

 - \infty 

\int \infty 

 - \infty 
g(r, \phi  - \Delta \phi )\delta (\tau  - r cos(\phi  - \theta ))| r| drd\phi 

=

\int \infty 

 - \infty 

\int \infty 

 - \infty 
g(r, \phi \prime )\delta (\tau  - r cos(\phi \prime +\Delta \phi  - \theta ))| r| drd\phi \prime 

= Rg(\tau , \theta  - \Delta \phi ).

Appendix B. Derivation of the CoR-shifted radon transform. Here we
present a brief derivation of (2.2). Assume, without loss of generality, that the beam
apparatus is initially positioned to measure the Radon transform along the direction
corresponding to \theta = 0. By Figure 2, this amounts to integrating the function f
representing our object along the vertical lines x = \tau , \tau \in \BbbR . To measure along the
direction corresponding to a general angle \theta , we rotate the beam apparatus counter-
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clockwise by \theta .2 If the CoR is (x\ast 
\theta , y

\ast 
\theta ), the line (beam) x = \tau rotates to the line

\ell (x\ast 
\theta , y

\ast 
\theta ) =

\biggl\{ 
(\tau  - x\ast 

\theta )

\biggl[ 
cos \theta 
sin \theta 

\biggr] 
+

\biggl[ 
x\ast 
\theta 

y\ast \theta 

\biggr] 
+ s

\biggl[ 
 - sin \theta 
cos \theta 

\biggr] 
: s \in \BbbR 

\biggr\} 
.

By definition, Rf(\tau , \theta , x\ast 
\theta , y

\ast 
\theta ) is the integral of f along \ell (x\ast 

\theta , y
\ast 
\theta ). An easy calculation

shows that, ignoring sign, this line is a distance

\tau \prime = \tau  - x\ast 
\theta + x\ast 

\theta cos \theta + y\ast \theta sin \theta 

from the origin. From the geometry of the rotation process we see that the line
perpendicular to \ell (x\ast 

\theta , y
\ast 
\theta ) is inclined at an angle \theta above the (positive) horizontal

axis. Hence,

Rf(\tau , \theta , x\ast 
\theta , y

\ast 
\theta ) =

\int 
\ell (x\ast 

\theta ,y
\ast 
\theta )

f | ds| =
\int \infty 

 - \infty 

\int \infty 

 - \infty 
f(x, y)\delta (\tau \prime  - x cos \theta  - y sin \theta ) dx dy,

from which (2.2) follows immediately upon substituting \tau  - x\ast 
\theta + x\ast 

\theta cos \theta + y\ast \theta sin \theta 
with \tau \prime .

Appendix C. Error analysis for the projection alignment process. In

this section, we consider the error in the approximation Rf(\tau , \theta , 0, 0) \approx \widetilde Rf(\tau , \theta , 0, 0)

described in section 2.3. Recall that \widetilde Rf(\tau , \theta , 0, 0) incorporates both the Gaussian
regularization of the Dirac delta and the discretization of the convolution integral
using the discrete Fourier transform.

Moving to a more abstract setting, the question is fundamentally one of assessing
the error in the approximation f(x - P ) \approx (f \ast \delta P,\sigma )(x), where f is some compactly
supported function on \BbbR and where we evaluate the right-hand side by discretizing
the convolution integral in a particular way. We lose no generality in assuming that
P = 0, so we can actually analyze f(x) \approx (f \ast \delta \sigma )(x), where we use the shorthand
\delta \sigma = \delta 0,\sigma . Since we wish to measure the error with respect to the uniform norm, we
need only consider the error at a single point x. We lose no generality in assuming
that point is x = 0, so we are led to the problem of understanding the error in

(C.1) f(0) \approx 
\int \infty 

 - \infty 
f(x)\delta \sigma (x) dx,

again under a specific discretization of the integral on the right-hand side, which in
particular includes truncating the domain of the Gaussian \delta \sigma .

Thus, we assume that supp f \subset [ - L,L] for some L > 0, and we define

\delta T\sigma (x;A) =

\Biggl\{ 
\delta \sigma (x) | x| \leq A,

0 | x| > A,

which is \delta \sigma with its support truncated to [ - A,A]. Our goal is to understand the error
E(\sigma ,A,K) in the approximation to f(0) obtained by using the K-point (composite)
trapezoid rule to discretize the integral in (C.1) on the interval [ - M,M ], where M =
L+A:

E(\sigma ,A,K) = f(0) - 2M

K

N\sum 
k= - N

f(xk)\delta 
T
\sigma (xk;A),

2As described earlier, in the actual experimental setup we rotate the object, not the beam; from
a mathematical point of view, it does not matter which we rotate.
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whereK = 2N+1 is odd3 and xk = k(2M/K),  - N \leq k \leq N . (This is mathematically
equivalent to evaluating the convolution at one of the points xk using the discrete
Fourier transform.) In particular, we want to know how E(\sigma ,A,K) depends on \sigma and
K.

E(\sigma ,A,K) comprises three sources of error. The first is the regularization error
that we incur because \sigma \not = 0:

ER(\sigma ) = f(0) - 
\int \infty 

 - \infty 
f(x)\delta \sigma (x) dx.

The second is the truncation error that comes from our limiting the support of the
Gaussian:

ET(\sigma ,A) =

\int \infty 

 - \infty 
f(x)\delta \sigma (x) dx - 

\int \infty 

 - \infty 
f(x)\delta T\sigma (x;A) dx.

The third is the discretization error due to our quadrature rule:

ED(\sigma ,A,K) =

\int \infty 

 - \infty 
f(x)\delta T\sigma (x;A) dx - 2M

K

N\sum 
k= - N

f(xk)\delta 
T
\sigma (xk;A).

We have

(C.2) E(\sigma ,A,K) = ER(\sigma ) + ET(\sigma ,A) + ED(\sigma ,A,K).

We will bound E(\sigma ,A,K) by bounding each of the terms on the right-hand side of
(C.2) in turn.

Assume that f is twice continuously differentiable. Then, Taylor's theorem (with
Lagrange's form of the remainder) enables us to write

f(x) = f(0) + f \prime (0)x+
1

2
f \prime \prime \bigl( \xi (x)\bigr) x2

for x \in \BbbR , where \xi (x) is some function that satisfies 0 \leq \xi (x) \leq x for x > 0 and
x \leq \xi (x) \leq 0 for x < 0. From symmetry of x\delta \sigma (x), it thus follows that\int \infty 

 - \infty 
f(x)\delta \sigma (x) dx = f(0) +

1

2

\int \infty 

 - \infty 
f \prime \prime \bigl( \xi (x)\bigr) x2\delta \sigma (x) dx,

and hence we have

(C.3) | ER(\sigma )| \leq 
1

2
\sigma 2\| f \prime \prime \| \infty 

for the regularization error.
The truncation error is even easier to handle. We have

ET(\sigma ,A) =

\int  - A

 - \infty 
f(x)\delta \sigma (x) dx+

\int \infty 

A

f(x)\delta \sigma (x) dx,

and so

(C.4) | ET(\sigma ,A)| \leq 2\| f\| \infty 
\int \infty 

A

\delta \sigma (x) dx \leq \| f\| \infty e - 
A2

2\sigma 2 ,

3We make this choice solely for notational convenience. Everything we do applies for even K as
well.



ERROR RECOVERY AND TOMOGRAPHIC INVERSION B519

by one of the many available bounds for the complementary error function [6].
The discretization error is trickier. Because \delta T\sigma is discontinuous on [ - M,M ],

we cannot apply most standard results, since these results assume continuity of the
integrand. Instead, we appeal to the following result from [9], which bounds the error
in the trapezoid rule approximation to the integral of a function of bounded variation.

Proposition C.1 ([9, Theorem 2.1]). If f : [a, b] \rightarrow \BbbR is of bounded variation,
then \bigm| \bigm| \bigm| \bigm| \bigm| 

\int b

a

f(t) dt - b - a

2

\bigl( 
f(a) + f(b)

\bigr) \bigm| \bigm| \bigm| \bigm| \bigm| \leq b - a

2
V (f),

where V (f) is the total variation of f over [a, b].

This result immediately yields a bound of (h/2)V (f) on the error in the composite
trapezoid rule, where h is the spacing between the grid points.

Because f is twice continuously differentiable, it is of bounded variation, and so
is \delta T\sigma . Hence, their product is of bounded variation as well. Moreover, we have

V (f\delta T\sigma ) \leq \| f\| \infty V (\delta T\sigma ) + \| \delta T\sigma \| \infty V (f).

(The norms and total variations are taken over [ - M,M ].) Since

\| \delta T\sigma \| \infty = \delta T\sigma (0;A) =
1

\sigma 
\surd 
2\pi 

and

V (\delta T\sigma ) = 2\delta T\sigma (0;A) =
2

\sigma 
\surd 
2\pi 

,

it follows that

V (f\delta T\sigma ) \leq 
1

\sigma 
\surd 
2\pi 

\bigl( 
2\| f\| \infty + V (f)

\bigr) 
.

The grid spacing in our trapezoid rule approximation is h = 2M/K. It follows that

(C.5) | ED(\sigma ,A,K)| \leq L+A

\sigma K
\surd 
2\pi 

\bigl( 
2\| f\| \infty + V (f)

\bigr) 
.

Combining (C.2)--(C.5), we arrive at the bound

| E(\sigma ,A,K)| \leq 1

2
\sigma 2\| f \prime \prime \| \infty + \| f\| \infty e - 

A2

2\sigma 2 +
L+A

\sigma K
\surd 
2\pi 

\bigl( 
2\| f\| \infty + V (f)

\bigr) 
.

This shows that

| E(\sigma ,A,K)| = O(\sigma 2) +O

\biggl( 
1

\sigma K

\biggr) 
,

the implied limits in the big-O symbols being \sigma \rightarrow 0 and K \rightarrow \infty . This is sufficient
to yield the desired qualitative understanding of the results presented in section 2.3.
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